Home
Class 12
MATHS
If a gt 0 and z=(1+i)^2/(a- i) has magn...

If `a gt 0 and z=(1+i)^2/(a- i)` has magnitude `sqrt(2/5) then barz is ` equal to

A

`1/5-3/5 i`

B

`-1/5-3/5 i `

C

`1/5+3/5 i `

D

`-3/5-1/5 i `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the conjugate of the complex number \( z \) given that \( z = \frac{(1+i)^2}{a-i} \) and that the magnitude of \( z \) is \( \sqrt{\frac{2}{5}} \). ### Step-by-Step Solution: 1. **Calculate \( (1+i)^2 \)**: \[ (1+i)^2 = 1^2 + 2 \cdot 1 \cdot i + i^2 = 1 + 2i - 1 = 2i \] Hence, \( z = \frac{2i}{a-i} \). 2. **Rationalize the denominator**: To rationalize \( z \), multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{2i}{a-i} \cdot \frac{a+i}{a+i} = \frac{2i(a+i)}{(a-i)(a+i)} = \frac{2i(a+i)}{a^2 + 1} \] 3. **Simplify the expression**: Expanding the numerator: \[ z = \frac{2ai + 2i^2}{a^2 + 1} = \frac{2ai - 2}{a^2 + 1} = \frac{-2 + 2ai}{a^2 + 1} \] Thus, we can express \( z \) as: \[ z = \frac{-2}{a^2 + 1} + \frac{2a}{a^2 + 1}i \] 4. **Identify the real and imaginary parts**: Let \( x = \frac{-2}{a^2 + 1} \) (real part) and \( y = \frac{2a}{a^2 + 1} \) (imaginary part). 5. **Calculate the magnitude of \( z \)**: The magnitude \( |z| \) is given by: \[ |z| = \sqrt{x^2 + y^2} = \sqrt{\left(\frac{-2}{a^2 + 1}\right)^2 + \left(\frac{2a}{a^2 + 1}\right)^2} \] \[ = \sqrt{\frac{4}{(a^2 + 1)^2} + \frac{4a^2}{(a^2 + 1)^2}} = \sqrt{\frac{4(1 + a^2)}{(a^2 + 1)^2}} = \frac{2\sqrt{1 + a^2}}{a^2 + 1} \] 6. **Set the magnitude equal to \( \sqrt{\frac{2}{5}} \)**: \[ \frac{2\sqrt{1 + a^2}}{a^2 + 1} = \sqrt{\frac{2}{5}} \] 7. **Square both sides**: \[ \frac{4(1 + a^2)}{(a^2 + 1)^2} = \frac{2}{5} \] 8. **Cross-multiply**: \[ 20(1 + a^2) = 2(a^2 + 1)^2 \] 9. **Expand and simplify**: \[ 20 + 20a^2 = 2(a^4 + 2a^2 + 1) \] \[ 20 + 20a^2 = 2a^4 + 4a^2 + 2 \] \[ 2a^4 - 16a^2 - 18 = 0 \] 10. **Divide by 2**: \[ a^4 - 8a^2 - 9 = 0 \] 11. **Let \( u = a^2 \)**: \[ u^2 - 8u - 9 = 0 \] 12. **Use the quadratic formula**: \[ u = \frac{8 \pm \sqrt{64 + 36}}{2} = \frac{8 \pm 10}{2} \] \[ u = 9 \quad \text{or} \quad u = -1 \quad (\text{discard since } a^2 > 0) \] Thus, \( a^2 = 9 \) implies \( a = 3 \). 13. **Find \( z \)**: Substitute \( a = 3 \) back into \( z \): \[ z = \frac{-2 + 6i}{10} = -\frac{1}{5} + \frac{3}{5}i \] 14. **Find the conjugate \( \bar{z} \)**: The conjugate of \( z \) is: \[ \bar{z} = -\frac{1}{5} - \frac{3}{5}i \] ### Final Answer: \[ \bar{z} = -\frac{1}{5} - \frac{3}{5}i \]

To solve the problem, we need to find the conjugate of the complex number \( z \) given that \( z = \frac{(1+i)^2}{a-i} \) and that the magnitude of \( z \) is \( \sqrt{\frac{2}{5}} \). ### Step-by-Step Solution: 1. **Calculate \( (1+i)^2 \)**: \[ (1+i)^2 = 1^2 + 2 \cdot 1 \cdot i + i^2 = 1 + 2i - 1 = 2i \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 2 CONJUGATE AND MODULUS OF A COMPLEX NUMBER (PASSAGE BASED PROBLEMS )(PASSAGE I)|3 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 2 CONJUGATE AND MODULUS OF A COMPLEX NUMBER (PASSAGE BASED PROBLEMS )(PASSAGE II)|2 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos

Similar Questions

Explore conceptually related problems

Let z=((1+i)^(2))/(a-i),(a>0) and |z|=sqrt((2)/(5)) then z is equal to

Let z=((1+i)^(2))/(a-i)(agta) and |z|=sqrt((2)/(5)) , then overline(z) is equal to

If z=sqrt(2i), then z is equal to

If z=i^(i) where i=sqrt(-)1 then |z| is equal to

If (1+i)z=(1-i)barz , then z is equal to

If z+sqrt(2)|z+1|+i=0, then z equals

If i=sqrt(-1) , then {i^(n)+i^(-n), n in Z} is equal to

if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ) , then ( 1 + iz + z^5 + iz^8)^9 is equal to:

If a complex number z satisfies z + sqrt(2) |z + 1| + i=0 , then |z| is equal to :

IIT JEE PREVIOUS YEAR-COMPLEX NUMBERS-TOPIC 2 CONJUGATE AND MODULUS OF A COMPLEX NUMBER (OBJECTIVE QUESTION I)(Only one correct option )
  1. The equation |z-i|=|z-1|,i= sqrt(-1)represents

    Text Solution

    |

  2. If a gt 0 and z=(1+i)^2/(a- i) has magnitude sqrt(2/5) then barz ...

    Text Solution

    |

  3. Let z1 and z2 be two complex numbers satisfying |z1|=9 and |z2-3-4i|=...

    Text Solution

    |

  4. Let (z-alpha)/(z+alpha) is purely imaginary and |z|=2, alphaepsilonR t...

    Text Solution

    |

  5. Let z be a complex number such that |z| + z = 3 + i (Where i=sqrt(-1...

    Text Solution

    |

  6. A complex number z is said to be unimodular if . Suppose z1 and z2 a...

    Text Solution

    |

  7. If z is a complex number such that |z|>=2 then the minimum value of |z...

    Text Solution

    |

  8. Let complex numbers alpha and 1/alpha lies on circle (x-x0)^2(y-y0)^2=...

    Text Solution

    |

  9. Let z be a complex number such that the imaginary part of z is nonzero...

    Text Solution

    |

  10. Let z=x+i y be a complex number where x and y are integers. Then, the ...

    Text Solution

    |

  11. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  12. If w=alpha+ibeta where beta ne 0 and z ne 1 satisfies the condition t...

    Text Solution

    |

  13. If |z| =1 and w=(z-1)/(z+1) (where z != -1) then Re(w) is

    Text Solution

    |

  14. For all complex numbers z1,z2 satisfying |z1|=12 and |z2-3-4i|=5 the m...

    Text Solution

    |

  15. If z1,z2 and z3 are complex numbers such that |z1|=|z2|=|z3|= |1/z1+1/...

    Text Solution

    |

  16. For positive integer n1,n2 the value of the expression (1+i)^(n1) +(1+...

    Text Solution

    |

  17. The complex number sin(x)+icos(2x) and cos(x)-isin(2x) are conjugate t...

    Text Solution

    |

  18. The points, z1,z2,z3,z4, in the complex plane are the vartices of a pa...

    Text Solution

    |

  19. If z=x+iy and w=(1-iz)/(z-i), then |w|=1 implies that in the complex ...

    Text Solution

    |

  20. |z-4| < |z-2| represents the region given by:

    Text Solution

    |