Home
Class 12
MATHS
The shaded region ,where P=(-1 ,0)Q=(-1...

The shaded region ,where `P=(-1 ,0)Q=(-1 + sqrt(2),sqrt(2))`
`R=(-1+sqrt(2),-sqrt(2)),S=1(1,0) ` is represent by

A

`|z+1| gt 2,|arg (z+1) lt pi/4`

B

`|z+1|lt 2,|arg (z+1)|lt pi/2`

C

`|z+1| gt 2,|arg (z+1)gt pi/4`

D

`|z-1| lt 2 , |arg (z+1)| gt pi/2`

Text Solution

Verified by Experts

The correct Answer is:
A

Since |PQ|=|PS| =|PR|=2
`therefore` Shaded part represents the external part of circle having centre (-1,0) and radius 2
As we know equation of circle having center `z_0` and radius r is `|z-z_0|=r`
`therefore |z-(-1 + 0i ) | gt 2`
`rArr | z + 1| gt 2 `
Also ,argument of z+1 with respect to positive direction of X-axis is `pi//4`
`therefore arg( z+1) le (pi)/4`
and argument of z+1 is anticlock wise dierction is `-pi//4`
`therefore - pi//4 le arg (z+1)`
From Eqs (i) and (ii)
`|arg (z+1)| le pi//4`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 4 ROTATION OF A COMPLEX NUMBER (OBJECTIVE QUESTION II)(ONE OR MORE THAN ONE CORRECT OPTION)|2 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 4 ROTATION OF A COMPLEX NUMBER (FILL IN THE BLANKS )|3 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 ARGUMENT OF A COMPLEX NUMBER (OBJECTIVE QUESTIONS II)(ANALYTICAL & DESCRIPTIVE QUESTIONS )|1 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos

Similar Questions

Explore conceptually related problems

(1) x^(2)-(sqrt(2)+1)x+sqrt(2)=0

The matrix A={:[((1)/(sqrt(2)),(1)/(sqrt(2))),((-1)/(sqrt(2)),(-1)/(sqrt(2)))]:} is

x=(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+2)=

(1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))=0

int_(0)^((1)/(2))(1)/(sqrt(3-2x))dx=sqrt(3)-sqrt(2)

sqrt(1+2sqrt(1+2sqrt(1+2sqrt(1+....))))=

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

lim_(x rarr0)(sqrt(1-x)-sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1+x))

If U= [((1)/(sqrt2),(-1)/(sqrt2)),((1)/(sqrt2),(1)/(sqrt2))] , then U^(-1) is