Home
Class 12
MATHS
If 1, a1, a2,....,a(n-1) are the nth roo...

If `1, a_1, a_2,....,a_(n-1)` are the nth roots of unity then prove that `(1-a_1)(1-a_2)(1-a_3)=(1-a_(n-1))=n`

Text Solution

Verified by Experts

Since `1,a_1,a_2…a_(n+1)` are nth roots of unity `rArr (x^n-1)=(x-1)(x-a_1)(x-a_2)……(x-a_(n-1))`
`rArr (x^n-1)/(x-1)=(x-a_1)(x-a_2)….(x-a_(n-1))`
`rArr x^(n-1)+n^(n-2)+…..+x^2+x+1`
`rArr x^(n-1)+x^(n-2)+…….+x^2+x+1`
`=(x-a_1)(x-a_2)......(x-a_(n-1))`
`[ because (x^n-1)/(x-1)=x^(n-2)+....+x+1]`
On putting x=1 we get 1+1+...n times
`=(1-a_1)(1-a_2).....(1-a_(n-1))`
`rArr (1-a_1)(1-a_2)....(1-a_(n-1))=n`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY ( TRUE/FLASE)|1 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos

Similar Questions

Explore conceptually related problems

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : 1+a_1+a_2+…+a_(n-1) =0.

If a_1,a_2,a_3,.....,a_n are in AP, prove that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n) .

If a_1,a_2,a_3,...,a_n be in AP whose common difference is d then prove that sum_(i=1)^n a_ia_(i+1)=n{a_1^2+na_1d+(n^2-1)/3 d^2} .

"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

If a_1,a_2,……….,a_(n+1) are in A.P. prove that sum_(k=0)^n ^nC_k.a_(k+1)=2^(n-1)(a_1+a_(n+1))

If the nonzero numbers a_1,a_2,a_3,....,a_n are in AP, prove that 1/(a_1a_2a_3)+1/(a_2a_3a_4)+...+1/(a_(n-2)a_(n-1)a_n)=1/(2(a_2-a_1))(1/(a_1a_2)-1/(a_(n-1)a_n)) .

If a ,a_1, a_2, a_3, a_(2n),b are in A.P. and a ,g_1,g_2,g_3, ,g_(2n),b . are in G.P. and h s the H.M. of aa n db , then prove that (a_1+a_(2n))/(g_1g_(2n))+(a_2+a_(2n-1))/(g_1g_(2n-1))++(a_n+a_(n+1))/(g_ng_(n+1))=(2n)/h