Home
Class 12
MATHS
If the fourth term in the binomial expan...

If the fourth term in the binomial expansion of `((2)/(x) + x^(log_(8) x))^(6) (x gt 0)` is `20 xx 8^(7)`, then the value of `x` is

A

`8^(-2)`

B

`8^(3)`

C

8

D

`8^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) given that the fourth term in the binomial expansion of \[ \left(\frac{2}{x} + x^{\log_8 x}\right)^6 \] is equal to \( 20 \times 8^7 \). ### Step-by-step Solution: 1. **Identify the General Term**: The general term \( T_{r+1} \) in the binomial expansion is given by: \[ T_{r+1} = \binom{n}{r} a^{n-r} b^r \] where \( n = 6 \), \( a = \frac{2}{x} \), and \( b = x^{\log_8 x} \). 2. **Write the Fourth Term**: The fourth term corresponds to \( r = 3 \): \[ T_4 = \binom{6}{3} \left(\frac{2}{x}\right)^{6-3} \left(x^{\log_8 x}\right)^3 \] Simplifying this gives: \[ T_4 = \binom{6}{3} \left(\frac{2}{x}\right)^3 \left(x^{\log_8 x}\right)^3 \] 3. **Calculate \( \binom{6}{3} \)**: \[ \binom{6}{3} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20 \] 4. **Substituting Values**: Substitute \( \binom{6}{3} \) into the term: \[ T_4 = 20 \cdot \left(\frac{2}{x}\right)^3 \cdot \left(x^{\log_8 x}\right)^3 = 20 \cdot \frac{8}{x^3} \cdot x^{3 \log_8 x} \] This simplifies to: \[ T_4 = 20 \cdot \frac{8}{x^3} \cdot x^{3 \log_8 x} = 20 \cdot 8 \cdot x^{3 \log_8 x - 3} \] 5. **Set Equal to Given Value**: We know that: \[ T_4 = 20 \times 8^7 \] Therefore, we set: \[ 20 \cdot 8 \cdot x^{3 \log_8 x - 3} = 20 \cdot 8^7 \] 6. **Cancel Common Terms**: Dividing both sides by \( 20 \): \[ 8 \cdot x^{3 \log_8 x - 3} = 8^7 \] Dividing both sides by \( 8 \): \[ x^{3 \log_8 x - 3} = 8^6 \] 7. **Express \( 8^6 \) in Terms of Base 8**: Since \( 8 = 2^3 \), we can write: \[ 8^6 = (2^3)^6 = 2^{18} = 8^6 \] 8. **Taking Logarithm**: Taking logarithm base 8 on both sides: \[ 3 \log_8 x - 3 = 6 \] Rearranging gives: \[ 3 \log_8 x = 9 \quad \Rightarrow \quad \log_8 x = 3 \] 9. **Solving for \( x \)**: Converting back from logarithmic form: \[ x = 8^3 = 512 \] ### Final Answer: Thus, the value of \( x \) is \( \boxed{512} \).

To solve the problem, we need to find the value of \( x \) given that the fourth term in the binomial expansion of \[ \left(\frac{2}{x} + x^{\log_8 x}\right)^6 \] is equal to \( 20 \times 8^7 \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 1 Binomial Expansion and General Term ( Objective Questions I) (Fill in the Blanks)|4 Videos
  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 1 Binomial Expansion and General Term ( Objective Questions I) (Analytical & Descriptive Questions )|4 Videos
  • AREA

    IIT JEE PREVIOUS YEAR|Exercise AREA USING INTEGRATION|55 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos

Similar Questions

Explore conceptually related problems

Find the fourth term in the expansion of (4/7 x - y^2)^5

If the middle term in the binomial expansion of ((1)/(x) + x sin x )^(10) is ( 63)/( 8) , then the value of 6sin^(2) x +sin x -2 is

In the expansion at ((2)/(x)+x^(log_(e)x))^(6) if T_(4)=20xx8^(7) then value of x is

If the fourth term in the expansion of ( x + x^(log_(2) x ))^(7) is 4480 , then the value of x where x in N is equal to :

If the third term in the binomial expansion of (1+x^(log_(2)x))^(5) equals 2560, then a possible value of x is:

If the middle term in the binomial expansion of ((1)/(x)+x sin x^(10)) is equal to (63)/(8), find the value of x.