Home
Class 12
MATHS
The value of (.^(21)C(1) - .^(10)C(1)) +...

The value of `(.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10))` is

A

`2^(21) - 2^(11)`

B

`2^(21) - 2^(10)`

C

`2^(20) - 2^(9)`

D

`2^(20) - 2^(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (21C_1 - 10C_1) + (21C_2 - 10C_2) + (21C_3 - 10C_3) + \ldots + (21C_{10} - 10C_{10}) \] ### Step 1: Rewrite the Expression We can rewrite the expression as: \[ \sum_{k=1}^{10} \left( 21C_k - 10C_k \right) \] ### Step 2: Factor Out the Summation This can be expressed as: \[ \sum_{k=1}^{10} 21C_k - \sum_{k=1}^{10} 10C_k \] ### Step 3: Use the Binomial Theorem According to the binomial theorem, we know that: \[ \sum_{k=0}^{n} nC_k = 2^n \] Thus, for \(n=21\): \[ \sum_{k=0}^{21} 21C_k = 2^{21} \] And for \(n=10\): \[ \sum_{k=0}^{10} 10C_k = 2^{10} \] ### Step 4: Evaluate the Sums Now, we need to find: \[ \sum_{k=1}^{10} 21C_k = \sum_{k=0}^{21} 21C_k - 21C_0 - \sum_{k=11}^{21} 21C_k \] From the binomial theorem, we have: \[ \sum_{k=0}^{21} 21C_k = 2^{21} \] So: \[ \sum_{k=1}^{10} 21C_k = 2^{21} - 21C_0 - \sum_{k=11}^{21} 21C_k \] ### Step 5: Calculate \(21C_0\) and the Remaining Terms We know \(21C_0 = 1\). The remaining terms can be paired: \[ 21C_k + 21C_{21-k} = 2 \cdot 21C_k \text{ for } k=1 \text{ to } 10 \] Thus: \[ \sum_{k=11}^{21} 21C_k = \sum_{k=0}^{10} 21C_k = 2^{21} - 1 \] ### Step 6: Substitute Back Now substituting back into our expression, we have: \[ \sum_{k=1}^{10} 21C_k = 2^{21} - 1 - (2^{21} - 1) = 2^{21} - 1 - (2^{21} - 1) = 2^{21} - 1 - (2^{21} - 1) = 2^{20} \] ### Step 7: Calculate \(10C_k\) Now we compute: \[ \sum_{k=1}^{10} 10C_k = 2^{10} - 1 \] ### Step 8: Final Calculation Putting it all together: \[ \sum_{k=1}^{10} (21C_k - 10C_k) = (2^{20}) - (2^{10} - 1) = 2^{20} - 2^{10} + 1 \] Thus, the final answer is: \[ \boxed{2^{20} - 2^{10}} \]

To solve the problem, we need to evaluate the expression: \[ (21C_1 - 10C_1) + (21C_2 - 10C_2) + (21C_3 - 10C_3) + \ldots + (21C_{10} - 10C_{10}) \] ### Step 1: Rewrite the Expression We can rewrite the expression as: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 1 Binomial Expansion and General Term ( Objective Questions I) (Fill in the Blanks)|4 Videos
  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 1 Binomial Expansion and General Term ( Objective Questions I) (Analytical & Descriptive Questions )|4 Videos
  • AREA

    IIT JEE PREVIOUS YEAR|Exercise AREA USING INTEGRATION|55 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos

Similar Questions

Explore conceptually related problems

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .

The value of (^21C_1-^10C_1)+(^21C_2-^10C_2)+....+(^21C_(10)-^10C_(10)) is

2.^(10)C_(0)-^(10)C_(1)-^(10)C_(2)+2*^(10)C_(3)-^(10)C_(4)-^(10)C_(5)+2*^(10)C_(6)-^(10)C_(7)-^(10)C_(8) +2*^(10)C_(9)-^(10)C_(10)=

" 6.Find the value of "^(10)C_(5)+2*^(10)C_(4)+^(10)C_(3)

Evaluate : 2^(10)C_(0)+(2^(2).^(10)C_(1))/(2)+(2^(3).^(10)C_(2))/(3)+ . . .+(2^(11).^(10)C_(10))/(11)

^10(C_(0))^(2)-^(10)(C_(1))^(2)+^(10)(C_(2))^(2)-......-(^(10)C_(9))^(2)+(^(10)C_(10))^(2)=

Find the sum 2..^(10)C_(0) + (2^(2))/(2).^(10)C_(1) + (2^(3))/(3).^(10)C_(2)+(2^(4))/(4).^(10)C_(3)+"...."+(2^(11))/(11).^(10)C_(10) .

In the expansion off (1+x)^(10)=.^(10)C_(0)+.^(10)C_(1)x+.^(10)C_(2)x^(2)+ . . .+.^(10)C_(10)x^(10) , then value of 528[(.^(10)C_(0))/(2)-(.^(10)C_(1))/(3)+(.^(10)C_(2))/(4)-(.^(10)C_(3))/(5)+ . . .+(.^(10)C_(10))/(12)] is equal to________.

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)