Home
Class 12
MATHS
If sum(r=0)^(2n) a(r ) (x - 2)^(r ) = su...

If `sum_(r=0)^(2n) a_(r ) (x - 2)^(r ) = sum_(r=0)^(2n) b_(r ) (x - 3)^(r )` and `a_(K) = 1, AA k ge n`, then show that `b_(n) = ""^(2n + 1)C_(n + 1)`

Text Solution

Verified by Experts

Let ` (y= a)^(m)` , where m is a positive integer, r `le` m
Now , ` (dy)/(dx) = m (x - a)^(m-1) rArr (d^(2) y)/(dx^(2)) = m (m-1) (x - a) ^(m -2)`
`rArr (d^(3) y)/(dx^(3)) = m (m -1) (m-2) (m-3) (x -a)^(n-4)`
On differentiating r times , we get
`(d^(r) y)/(dx^(r)) = m (m-1)...(m - r + 1) (x -a)^(m-r)`
`= (m!)/((m-r)!) (x -a)^(m-r) = r !(""^(m)C_(r)) (x - a)^(n-r)`
and for ` r gt m , (d^(r)y)/(dx^(r)) = 0 `
Now , ` sum_(r=0)^(2n) a , (x - 2)^(r) = sum_(r=0)^(2n) b_(r)` [given]
On differnentiating both sides n times w.r.t.x, we get
` sum_(r=0)^(2n) a_(r) (n!)^(r) C_(n) (x - 2)^(r-n) = sum_(r=0)^(2n) b_(r) (n!) ""^(r)C_(n) (x-3) ^(r-n)`
On putting x = 3, we get
[ since ,all the terms except first on RHS bocome zero]
`rArr b_(n) = ""^(n)C_(n) + ""^(n+1)C_(n) + ""^(n+2)C_(n) +...+ ""^(2n)C_(n) `
` [because a_(r) = 1, rArr ge n]`
` (""^(n+2)C_(n+1) + ""^(n+2)C_(n)) +...+ ""^(2n)C_(n)`
`=""^(n+3)C_(n+1)+...+""^(n2)C_(n)=...`
`= ""^(n2)C_(n+1)+ ""^(n2)C_(n)= ""^(2n+1)C_(n+1)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 1 Binomial Expansion and General Term ( Objective Questions I) (Integer Answer Type Questions )|3 Videos
  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 2 Properties of Binomial Coefficent Objective Questions I (Only one correct option)|10 Videos
  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 1 Binomial Expansion and General Term ( Objective Questions I) (Fill in the Blanks)|4 Videos
  • AREA

    IIT JEE PREVIOUS YEAR|Exercise AREA USING INTEGRATION|55 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos

Similar Questions

Explore conceptually related problems

sum_(r=0)^(2n)a_(r)(x-2)^(r)=sum_(r=0)^(2n)b_(r)(x-3)^(r) and a_(k)=1 for all k>=n, then show that b_(n)=2n+1C_(n+1)

sum_(i=0i0)^(2n)a_(r)(x-1)^(r)=sum_(r=0)^(2n)b_(r)(x-2)^(r) and b_(r)=(-1)^(r-n) for all r<=n, then a_(n)=

If sum_(r=0)^(2n)a_(r)(x-100)^(r)=sum_(r=0)^(2n)br(x-101)^(r) and a_(k)=(2^(k))/(kC_(n))AA k>=n then b_(-) n equals ( A )2^(n)(2^(n+1)-1)(B)2^(n)(2^(n)-1)(C)2^(n)(2^(n)+1)(D)2^(n+1)(2^(n)-1)

If a_(n)=sum_(r=0)^(n)(1)/(nC_(r)), then sum_(r=0)^(n)(r)/(nC_(r)) equals

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(n) and sum_(r=0)^(n)(C_(r))/(r+1)=k then the value of k is