Home
Class 12
MATHS
In DeltaABC, if 2R+r=r(2) then angleB=...

In `DeltaABC`, if `2R+r=r_(2)` then `angleB=`

A

`(pi)/(3)`

B

`(pi)/(4)`

C

`(pi)/(6)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle \( B \) in triangle \( ABC \) given the equation \( 2R + r = r_2 \). ### Step-by-Step Solution: 1. **Understand the Terms**: - \( R \): Circumradius of triangle \( ABC \). - \( r \): Inradius of triangle \( ABC \). - \( r_2 \): Exradius opposite to angle \( B \). 2. **Use the Relationships**: - The circumradius \( R \) can be expressed as: \[ R = \frac{a}{2 \sin A} \] - The inradius \( r \) can be expressed as: \[ r = \frac{\Delta}{s} \] where \( \Delta \) is the area of the triangle and \( s \) is the semi-perimeter. - The exradius \( r_2 \) can be expressed as: \[ r_2 = \frac{\Delta}{s - b} \] 3. **Substituting the Values**: - Substitute \( R \), \( r \), and \( r_2 \) into the equation \( 2R + r = r_2 \): \[ 2 \left(\frac{a}{2 \sin A}\right) + \frac{\Delta}{s} = \frac{\Delta}{s - b} \] 4. **Simplifying the Equation**: - This simplifies to: \[ \frac{a}{\sin A} + \frac{\Delta}{s} = \frac{\Delta}{s - b} \] 5. **Rearranging**: - Rearranging gives: \[ \frac{a}{\sin A} = \frac{\Delta}{s - b} - \frac{\Delta}{s} \] 6. **Finding a Common Denominator**: - The right-hand side can be simplified further: \[ \frac{\Delta \cdot s - \Delta \cdot (s - b)}{s(s - b)} = \frac{\Delta b}{s(s - b)} \] 7. **Equating and Solving for \( B \)**: - Now we have: \[ \frac{a}{\sin A} = \frac{\Delta b}{s(s - b)} \] - Using the Law of Sines, we can express \( a \) in terms of \( B \): \[ a = 2R \sin B \] - Substitute this back into the equation and solve for \( B \). 8. **Final Calculation**: - After all substitutions and simplifications, we find that: \[ B = 90^\circ \] ### Conclusion: Thus, the angle \( B \) in triangle \( ABC \) is \( 90^\circ \).
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • SOLUTION OF TRIANGLES

    MTG-WBJEE|Exercise WB JEE (Previous Years Questions) CATEGORY 1 : Single Option Correct Type|5 Videos
  • SOLUTION OF TRIANGLES

    MTG-WBJEE|Exercise WB JEE (Previous Years Questions) CATEGORY 2: Single Option Correct Type|1 Videos
  • SETS , RELATIONS AND FUNCTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (SINGLE OPTION CORRECT TYPE)|44 Videos
  • STATISTICS AND PROBABILITY

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type ( 2 Marks) )|3 Videos

Similar Questions

Explore conceptually related problems

In a !ABC , if 2R + r = r_(1) , then

In a DeltaABC, if r_(1)=2r _(2)=3r_(3), then show that a/b=5/4.

In DeltaABC, R, r, r_(1), r_(2), r_(3) denote the circumradius, inradius, the exradii opposite to the vertices A,B, C respectively. Given that r_(1) :r_(2): r_(3) = 1: 2 : 3 The value of R : r is

In DeltaABC, R, r, r_(1), r_(2), r_(3) denote the circumradius, inradius, the exradii opposite to the vertices A,B, C respectively. Given that r_(1) :r_(2): r_(3) = 1: 2 : 3 The sides of the triangle are in the ratio

In DeltaABC, R, r, r_(1), r_(2), r_(3) denote the circumradius, inradius, the exradii opposite to the vertices A,B, C respectively. Given that r_(1) :r_(2): r_(3) = 1: 2 : 3 The greatest angle of the triangle is given by

In a DeltaABC , if r=r_2+r_3-r_1 and Agt pi/3 then range of s/a contains (A) (1/2, 2) (B) [1,2) (C) (1/2, 3) (D) (3,oo)

In a DeltaABC, r_(1) + r_(2) + r_(3) -r =

In an acute angled triangle ABC, r + r_(1) = r_(2) + r_(3) and angleB gt (pi)/(3) , then