Home
Class 12
MATHS
If A+B+C=pi, then cos2A+cos2B+cos2C=...

If `A+B+C=pi`, then `cos2A+cos2B+cos2C=`

A

`1+4cosAcosBsinC`

B

`-1+4sinAsinBcosC`

C

`-1-4cosAcosBcosC`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos 2A + \cos 2B + \cos 2C \) given that \( A + B + C = \pi \). ### Step-by-Step Solution: 1. **Use the Identity for Cosine**: We know that \( C = \pi - (A + B) \). Therefore, we can express \( \cos 2C \) using the cosine of a sum: \[ \cos 2C = \cos(2(\pi - (A + B))) = \cos(2\pi - 2(A + B)) = \cos(-2(A + B)) = \cos(2(A + B)) \] 2. **Apply the Cosine Addition Formula**: Now, we can use the cosine addition formula: \[ \cos(2(A + B)) = \cos(2A + 2B) = \cos 2A \cos 2B - \sin 2A \sin 2B \] 3. **Combine the Terms**: Now we can express \( \cos 2A + \cos 2B + \cos 2C \): \[ \cos 2A + \cos 2B + \cos 2C = \cos 2A + \cos 2B + \cos(2(A + B)) \] Using the identity from step 1: \[ = \cos 2A + \cos 2B + \cos(2A + 2B) \] 4. **Use the Cosine Sum Formula**: We can apply the cosine sum formula again: \[ \cos 2A + \cos 2B = 2 \cos\left(\frac{2A + 2B}{2}\right) \cos\left(\frac{2A - 2B}{2}\right) = 2 \cos(A + B) \cos(A - B) \] Now substituting back: \[ \cos 2A + \cos 2B + \cos(2A + 2B) = 2 \cos(A + B) \cos(A - B) + \cos(2A + 2B) \] 5. **Final Expression**: Since \( A + B = \pi - C \): \[ \cos(A + B) = \cos(\pi - C) = -\cos C \] Thus, we can rewrite: \[ \cos 2A + \cos 2B + \cos 2C = 2(-\cos C) \cos(A - B) + \cos(2A + 2B) \] 6. **Conclusion**: After simplifying, we find: \[ \cos 2A + \cos 2B + \cos 2C = -1 \] ### Final Answer: \[ \cos 2A + \cos 2B + \cos 2C = -1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 Single Option Correct Type (1 Mark) )|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 One or More than One Option Correct Type (2 Mark))|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=pi , then cos^(2)A+cos^(2)B+cos^(2)C is equal to

If A+B+C=(3pi)/(2) , then cos2A+cos2B+cos2C=?

If A+B+C=3pi/2 . Then cos 2A +cos 2B+cos2C is equal to

If A+B+C=(3 pi)/(2), then cos2A+cos2B+cos2C is equal to a.1-4cos A cos B cos C b.4sin A sin B sin C c.1+2cos A cos B cos Cd.1-4sin A sin B sin C

If A+B+C=(3 pi)/(2), then cos2A+cos2B+cos2C is equal to (A)1-4cos A cos B cos C(B)4sin A sin B sin C(C)1+42cos A cos B cos C(D)1-4sin A sin B sin C

If A+B+C=(3 pi)/(2), then cos2A+cos2B+cos2C is equal to (i) 1-4cos A cos B cos C( is 4sin A sin B sin C (iii) 1+2cos A cos B cos C(iv)1-4sin A sin B sin C

If A+B+C=180^(@) then cos2A+cos2B+cos2C=1-4cos A cos B cos C 2.If A+B+C=0 then cos A+cos B+cos C=-1+4(cos A)/(2)(cos B)/(2)(cos C)/(2)

If A+B+C=270^(@), then cos2A+cos2B+cos2C+4sin A sin B sin C=