Home
Class 12
MATHS
If the value of "cos"pi/15"cos"(2pi)/15"...

If the value of `"cos"pi/15"cos"(2pi)/15"cos"(3pi)/15"cos"(4pi)/15"cos"(5pi)/15"cos"(6pi)/15"cos"(7pi)/15` is `(1)/(2^(k))`, then which of the following is true ?

A

k is prime

B

factors of k are 1,7

C

k is odd

D

k is even

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the product: \[ \cos\left(\frac{\pi}{15}\right) \cos\left(\frac{2\pi}{15}\right) \cos\left(\frac{3\pi}{15}\right) \cos\left(\frac{4\pi}{15}\right) \cos\left(\frac{5\pi}{15}\right) \cos\left(\frac{6\pi}{15}\right) \cos\left(\frac{7\pi}{15}\right) \] and express it in the form \(\frac{1}{2^k}\). ### Step 1: Use the product-to-sum identities We can utilize the identity \(2 \sin a \cos a = \sin(2a)\) to combine the cosine terms. We start with the first two terms: \[ \cos\left(\frac{\pi}{15}\right) = \frac{\sin\left(\frac{2\pi}{15}\right)}{2\sin\left(\frac{\pi}{15}\right)} \] Thus, we can rewrite the product as: \[ \frac{\sin\left(\frac{2\pi}{15}\right)}{2\sin\left(\frac{\pi}{15}\right)} \cdot \cos\left(\frac{2\pi}{15}\right) \cdots \cos\left(\frac{7\pi}{15}\right) \] ### Step 2: Continue combining terms Next, we apply the same identity to the next pair: \[ \cos\left(\frac{2\pi}{15}\right) = \frac{\sin\left(\frac{4\pi}{15}\right)}{2\sin\left(\frac{2\pi}{15}\right)} \] Now we can combine these terms: \[ \frac{\sin\left(\frac{2\pi}{15}\right) \sin\left(\frac{4\pi}{15}\right)}{4\sin\left(\frac{\pi}{15}\right)\sin\left(\frac{2\pi}{15}\right)} \cdots \cos\left(\frac{7\pi}{15}\right) \] ### Step 3: Repeat the process Continuing this process, we can keep combining the sine and cosine terms until we reach: \[ \frac{\sin\left(\frac{12\pi}{15}\right)}{2^7 \sin\left(\frac{\pi}{15}\right)} \] ### Step 4: Simplify the sine term Using the property \(\sin(\pi - x) = \sin(x)\): \[ \sin\left(\frac{12\pi}{15}\right) = \sin\left(\frac{3\pi}{15}\right) = \sin\left(\frac{\pi}{5}\right) \] ### Step 5: Final expression Thus, the product simplifies to: \[ \frac{\sin\left(\frac{\pi}{5}\right)}{2^7 \sin\left(\frac{\pi}{15}\right)} \] ### Step 6: Set the equation We know that the product equals \(\frac{1}{2^k}\), so we can equate: \[ \frac{1}{2^7} = \frac{1}{2^k} \] From this, we find: \[ k = 7 \] ### Step 7: Conclusion Now we can analyze the properties of \(k\): 1. **Is \(k\) prime?** Yes, 7 is a prime number. 2. **Is \(k\) odd?** Yes, 7 is odd. 3. **Is \(k\) even?** No, 7 is not even. Thus, the correct statements about \(k\) are that it is prime and odd.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 1 : Single Option Correct Type (1 Mark))|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 Single Option Correct Type (1 Mark) )|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

The value of cos(pi)/(5)cos.2(pi)/(5)cos4(pi)/(5)cos8(pi)/(5)=

The value of 2"cos"(pi)/(13)"cos"(9pi)/(13)+"cos"(3pi)/(13)+"cos"(5pi)/(13) is

cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9)cos""(4pi)/(9), is

The value of cos((pi)/(15))cos((2 pi)/(15))cos((4 pi)/(15))cos((8 pi)/(15))=

cos ""(2pi)/( 15) cos ""(4pi)/(15) cos ""(8pi)/(15) cos ""(16pi)/(15)=

cos""(pi)/(15).cos""(2pi)/(15).cos""(4pi)/(15).cos""(8pi)/(15) is equal to

The value of cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((14pi)/(15)), is