Home
Class 12
MATHS
If x = sin alpha, y = sin beta, z = sin ...

If `x = sin alpha, y = sin beta, z = sin (alpha+beta)` then `cos(alpha+beta)=`

A

`(z^(2)-x^(2)-y^(2))/(xy)`

B

`(z^(2)-x^(2)-y^(2))/(2xy)`

C

`(z^(2)+x^(2)+y^(2))/(xy)`

D

`(x^(2)+y^(2)+z^(2))/(2xy)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 Single Option Correct Type (1 Mark) )|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 One or More than One Option Correct Type (2 Mark))|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

If x cos alpha + y sin alpha = x cos beta + y sin beta = 2a then cos alpha cos beta =

sin alpha + sin beta = a, cos alpha + cos beta = b rArr sin (alpha + beta)

If sin alpha+sin beta=a and cos alpha-cos beta=b then

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/(2))=

If x=r sin alpha cos beta, y= r sin alpha sin beta and z= r cos alpha , prove that x^(2)+y^(2) + z^(2) = r^(2).

What is sin (alpha+beta) - 2 sin alpha cos beta + sin(alpha- beta) =