Home
Class 12
MATHS
If sin5x+sin3x+sinx=0, then the value of...

If `sin5x+sin3x+sinx=0`, then the value of x other than zero between `0lexlepi//2` is

A

`pi//6`

B

`pi//12`

C

`pi//3`

D

`pi//9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin 5x + \sin 3x + \sin x = 0 \) for values of \( x \) other than zero in the interval \( \left(0, \frac{\pi}{2}\right) \), we can follow these steps: ### Step 1: Use the sum-to-product identities We can group the terms and apply the sum-to-product identities. The identity states that: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Let's group \( \sin 5x \) and \( \sin x \): \[ \sin 5x + \sin x = 2 \sin\left(\frac{5x + x}{2}\right) \cos\left(\frac{5x - x}{2}\right) = 2 \sin(3x) \cos(2x) \] Thus, we can rewrite the equation as: \[ 2 \sin(3x) \cos(2x) + \sin 3x = 0 \] ### Step 2: Factor out \( \sin 3x \) Now, we can factor out \( \sin 3x \): \[ \sin 3x (2 \cos 2x + 1) = 0 \] ### Step 3: Solve for \( \sin 3x = 0 \) Setting \( \sin 3x = 0 \) gives: \[ 3x = n\pi \quad \text{for } n \in \mathbb{Z} \] Thus, \[ x = \frac{n\pi}{3} \] ### Step 4: Solve for \( 2 \cos 2x + 1 = 0 \) Setting \( 2 \cos 2x + 1 = 0 \) gives: \[ \cos 2x = -\frac{1}{2} \] The angles where cosine is \(-\frac{1}{2}\) are: \[ 2x = \frac{2\pi}{3} + 2k\pi \quad \text{or} \quad 2x = \frac{4\pi}{3} + 2k\pi \quad \text{for } k \in \mathbb{Z} \] Thus, \[ x = \frac{\pi}{3} + k\pi \quad \text{or} \quad x = \frac{2\pi}{3} + k\pi \] ### Step 5: Find values of \( x \) in the interval \( (0, \frac{\pi}{2}) \) Now we need to find values of \( x \) from both cases that lie in the interval \( (0, \frac{\pi}{2}) \). 1. From \( x = \frac{n\pi}{3} \): - For \( n = 1 \): \( x = \frac{\pi}{3} \) (valid) - For \( n = 2 \): \( x = \frac{2\pi}{3} \) (not valid, exceeds \( \frac{\pi}{2} \)) 2. From \( x = \frac{\pi}{3} + k\pi \): - For \( k = 0 \): \( x = \frac{\pi}{3} \) (valid) - For \( k = 1 \): \( x = \frac{4\pi}{3} \) (not valid, exceeds \( \frac{\pi}{2} \)) 3. From \( x = \frac{2\pi}{3} + k\pi \): - For \( k = 0 \): \( x = \frac{2\pi}{3} \) (not valid, exceeds \( \frac{\pi}{2} \)) ### Conclusion The only valid solution in the interval \( (0, \frac{\pi}{2}) \) is: \[ \boxed{\frac{\pi}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 Single Option Correct Type (1 Mark) )|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 One or More than One Option Correct Type (2 Mark))|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

If sinx +sin3x+sin5x=0, then

sinx+sin3x+sin5x=0

sinx+sin3x+sin5x=0

If sin5x+sin3x+sin x=0, then the value of x other than 0 lying between 0<=x<=(pi)/(2) is

If sin5x+sin3x+sin x=0. then the value of x other than 0 lying between 0<=x<=(pi)/(2) is

sin x+sin2x+sin3x=0 if :

If |(sinx,sin2x,sin3x),(sin2x,sin3x,sinx),(sin3x,sinx,sin2x)|=0 then the number of values of x in interval [0,2pi] is

The minimum value of f(x)=sin^4x+cos^4x , 0lexlepi/2 is