Home
Class 12
MATHS
In a DeltaABC,"cot"A/2+"cot"B/2+"cot"(C)...

In a `DeltaABC,"cot"A/2+"cot"B/2+"cot"(C)/(2)=`

A

0

B

`"cot"(1)/(2)"A cot"(1)/(2)"B cot"(1)/(2)C`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\cot(A/2) + \cot(B/2) + \cot(C/2)}{2}\) in triangle \(ABC\). ### Step-by-Step Solution: 1. **Understanding the Angles in Triangle**: In triangle \(ABC\), the sum of the angles is given by: \[ A + B + C = \pi \] Therefore, we can express the half-angles as: \[ \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = \frac{\pi}{2} \] 2. **Rearranging the Angles**: From the equation above, we can rearrange it to express \(C/2\): \[ \frac{A}{2} + \frac{B}{2} = \frac{\pi}{2} - \frac{C}{2} \] 3. **Applying Cotangent**: Now, we take the cotangent of both sides: \[ \cot\left(\frac{A}{2} + \frac{B}{2}\right) = \cot\left(\frac{\pi}{2} - \frac{C}{2}\right) \] Using the cotangent identity, we know: \[ \cot\left(\frac{\pi}{2} - x\right) = \tan(x) \] Thus, we have: \[ \cot\left(\frac{A}{2} + \frac{B}{2}\right) = \tan\left(\frac{C}{2}\right) \] 4. **Using Cotangent Addition Formula**: The cotangent addition formula states: \[ \cot(A + B) = \frac{\cot A \cot B - 1}{\cot A + \cot B} \] Therefore, we can write: \[ \cot\left(\frac{A}{2} + \frac{B}{2}\right) = \frac{\cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) - 1}{\cot\left(\frac{A}{2}\right) + \cot\left(\frac{B}{2}\right)} \] 5. **Equating the Two Expressions**: From our previous steps, we have: \[ \frac{\cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) - 1}{\cot\left(\frac{A}{2}\right) + \cot\left(\frac{B}{2}\right)} = \tan\left(\frac{C}{2}\right) \] We know that \(\tan\left(\frac{C}{2}\right) = \frac{1}{\cot\left(\frac{C}{2}\right)}\), hence: \[ \cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) - 1 = \tan\left(\frac{C}{2}\right) \left(\cot\left(\frac{A}{2}\right) + \cot\left(\frac{B}{2}\right)\right) \] 6. **Final Expression**: Rearranging gives us: \[ \cot\left(\frac{A}{2}\right) + \cot\left(\frac{B}{2}\right) + \cot\left(\frac{C}{2}\right) = 2 \cdot \cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) \] Therefore, we can conclude: \[ \frac{\cot\left(\frac{A}{2}\right) + \cot\left(\frac{B}{2}\right) + \cot\left(\frac{C}{2}\right)}{2} = \cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) \] ### Final Answer: Thus, the value of \(\frac{\cot(A/2) + \cot(B/2) + \cot(C/2)}{2}\) is equal to \(\cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right)\).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 Single Option Correct Type (1 Mark) )|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 One or More than One Option Correct Type (2 Mark))|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

In any Delta ABC , If cot ""A/2 , cot ""B/2 ,cot ""C/2 are in AP, then a,b,c are in

In any Delta ABC,cot((A)/(2)),cot((B)/(2)),cot((C)/(2)) are in A.P.

In a DeltaABC , 2A(cot B + cot C)=

With usual notations prove that in a triangle ABC, cot(A/2)+cot(B/2)+cot(C/2)=s^2/Delta

In a DeltaABC, "the value of"cot""(A)/(2)cot""(B)/(2)cot""(C)/(2)is

In any !ABC ,If cot(A/2),cot(B/2),cot(C/2) are in A.P.,then a,b,c are in

In a Delta ABC, if cot((A)/(2)):cot((B)/(2)):cot((C)/(2))=1:4:15 then the greatest angle is