Home
Class 12
MATHS
If 0ltAltBltpi,sinA-sinB=(1)/(sqrt(2)),c...

If `0ltAltBltpi,sinA-sinB=(1)/(sqrt(2)),cosA-cosB=sqrt((3)/(2))`, then `A+B=`

A

`(2pi)/(3)`

B

`(5pi)/(6)`

C

`pi`

D

`(4pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( \sin A - \sin B = \frac{1}{\sqrt{2}} \) 2. \( \cos A - \cos B = \sqrt{\frac{3}{2}} \) We will square both equations and add them together. ### Step 1: Square both equations Squaring the first equation: \[ (\sin A - \sin B)^2 = \left(\frac{1}{\sqrt{2}}\right)^2 \] This simplifies to: \[ \sin^2 A - 2 \sin A \sin B + \sin^2 B = \frac{1}{2} \] Squaring the second equation: \[ (\cos A - \cos B)^2 = \left(\sqrt{\frac{3}{2}}\right)^2 \] This simplifies to: \[ \cos^2 A - 2 \cos A \cos B + \cos^2 B = \frac{3}{2} \] ### Step 2: Add the two squared equations Now, we add the two equations: \[ \sin^2 A + \cos^2 A - 2 \sin A \sin B + \sin^2 B + \cos^2 B - 2 \cos A \cos B = \frac{1}{2} + \frac{3}{2} \] Using the Pythagorean identity \( \sin^2 A + \cos^2 A = 1 \) and \( \sin^2 B + \cos^2 B = 1 \): \[ 1 + 1 - 2(\sin A \sin B + \cos A \cos B) = 2 \] This simplifies to: \[ 2 - 2(\sin A \sin B + \cos A \cos B) = 2 \] ### Step 3: Simplify the equation Rearranging gives: \[ -2(\sin A \sin B + \cos A \cos B) = 0 \] Thus: \[ \sin A \sin B + \cos A \cos B = 0 \] This can be rewritten using the cosine of the difference formula: \[ \cos(A - B) = 0 \] ### Step 4: Solve for \( A - B \) The equation \( \cos(A - B) = 0 \) implies: \[ A - B = \frac{\pi}{2} \quad \text{or} \quad A - B = \frac{3\pi}{2} \] Since \( 0 < A < B < \pi \), we take: \[ A - B = \frac{\pi}{2} \quad \Rightarrow \quad B = A + \frac{\pi}{2} \] ### Step 5: Substitute \( B \) into the sine equation Substituting \( B = A + \frac{\pi}{2} \) into the first equation: \[ \sin A - \sin\left(A + \frac{\pi}{2}\right) = \frac{1}{\sqrt{2}} \] Using the identity \( \sin\left(A + \frac{\pi}{2}\right) = \cos A \): \[ \sin A - \cos A = \frac{1}{\sqrt{2}} \] ### Step 6: Substitute \( B \) into the cosine equation Substituting \( B = A + \frac{\pi}{2} \) into the second equation: \[ \cos A - \cos\left(A + \frac{\pi}{2}\right) = \sqrt{\frac{3}{2}} \] Using the identity \( \cos\left(A + \frac{\pi}{2}\right) = -\sin A \): \[ \cos A + \sin A = \sqrt{\frac{3}{2}} \] ### Step 7: Solve the system of equations Now we have the system: 1. \( \sin A - \cos A = \frac{1}{\sqrt{2}} \) 2. \( \sin A + \cos A = \sqrt{\frac{3}{2}} \) Adding these two equations: \[ 2 \sin A = \frac{1}{\sqrt{2}} + \sqrt{\frac{3}{2}} \] Thus: \[ \sin A = \frac{\frac{1}{\sqrt{2}} + \sqrt{\frac{3}{2}}}{2} \] ### Step 8: Find \( A \) and \( B \) Calculating \( A \): Using known values, we find: \[ A = 75^\circ = \frac{5\pi}{12} \] Then: \[ B = A + \frac{\pi}{2} = \frac{5\pi}{12} + \frac{6\pi}{12} = \frac{11\pi}{12} \] ### Step 9: Find \( A + B \) Finally, we calculate: \[ A + B = \frac{5\pi}{12} + \frac{11\pi}{12} = \frac{16\pi}{12} = \frac{4\pi}{3} \] Thus, the answer is: \[ \boxed{\frac{4\pi}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 Single Option Correct Type (1 Mark) )|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 One or More than One Option Correct Type (2 Mark))|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)) , then the value of A+B is equal to

If 0ltAltB ltpi, sin A+sinB=sqrt((3)/(2)) and cos A+cosB=(1)/(sqrt2), then A =

If (sinA)/(sinB)=(sqrt(3))/(2) and (cosA)/(cosB)=(sqrt(5))/(2) , 0 lt A, B lt (pi)/(2) then tanA+tanB is equal to :

If (sinA)/(sinB)=(sqrt(3))/2 and (cosA)/(cosB)=(sqrt(5))/2, 0 < A, B < pi/2, then tanA-tanB is equal to

If sinA=1/sqrt2, cosB=sqrt3/2 then (tanA+tanB)/(1-tanAtanB)=

(sin^2A-sin^2B)/(sinA.cosA-sinB.cosB)=....