Home
Class 12
MATHS
If tan^(3)theta+cot^(3)theta=8" cosec"^(...

If `tan^(3)theta+cot^(3)theta=8" cosec"^(3)2theta+12`, then `theta=`

A

`(npi)/(2)-(-1)^(n)(pi)/(12)`

B

`(npi)/(2)+(-1)^(n)(pi)/(12)`

C

`(npi)/(2)+(-1)^(n)(7pi)/(12)`

D

`(npi)/(2)-(-1)^(n)(7pi)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^3 \theta + \cot^3 \theta = 8 \csc^3 2\theta + 12 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \tan^3 \theta + \cot^3 \theta = 8 \csc^3 2\theta + 12 \] We can express \( \tan \theta \) and \( \cot \theta \) in terms of sine and cosine: \[ \tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \] Thus, we can rewrite: \[ \tan^3 \theta = \frac{\sin^3 \theta}{\cos^3 \theta}, \quad \cot^3 \theta = \frac{\cos^3 \theta}{\sin^3 \theta} \] This gives us: \[ \frac{\sin^3 \theta}{\cos^3 \theta} + \frac{\cos^3 \theta}{\sin^3 \theta} = 8 \csc^3 2\theta + 12 \] ### Step 2: Combine the left side Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \), we can combine the left side: \[ \frac{\sin^6 \theta + \cos^6 \theta}{\sin^3 \theta \cos^3 \theta} \] We can express \( \sin^6 \theta + \cos^6 \theta \) as: \[ \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) = 1(\sin^4 \theta + \cos^4 \theta - \sin^2 \theta \cos^2 \theta) \] ### Step 3: Substitute \( \csc 2\theta \) We know that: \[ \csc 2\theta = \frac{1}{\sin 2\theta} = \frac{1}{2 \sin \theta \cos \theta} \] Thus, \[ \csc^3 2\theta = \frac{1}{(2 \sin \theta \cos \theta)^3} = \frac{1}{8 \sin^3 \theta \cos^3 \theta} \] Substituting this into the equation gives: \[ \frac{\sin^6 \theta + \cos^6 \theta}{\sin^3 \theta \cos^3 \theta} = 8 \cdot \frac{1}{8 \sin^3 \theta \cos^3 \theta} + 12 \] This simplifies to: \[ \frac{\sin^6 \theta + \cos^6 \theta}{\sin^3 \theta \cos^3 \theta} = \frac{1}{\sin^3 \theta \cos^3 \theta} + 12 \] ### Step 4: Clear denominators Multiplying through by \( \sin^3 \theta \cos^3 \theta \) gives: \[ \sin^6 \theta + \cos^6 \theta = 1 + 12 \sin^3 \theta \cos^3 \theta \] ### Step 5: Use identities Using the identity \( \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^4 \theta + \cos^4 \theta - \sin^2 \theta \cos^2 \theta) \) and \( \sin^2 \theta + \cos^2 \theta = 1 \), we have: \[ \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \] Thus, we can rewrite: \[ 1 - 3\sin^2 \theta \cos^2 \theta = 1 + 12 \sin^3 \theta \cos^3 \theta \] ### Step 6: Solve for \( \theta \) After simplifying, we arrive at a cubic equation in terms of \( \sin^2 \theta \) or \( \cos^2 \theta \). Solving this will yield the values of \( \theta \). ### Final Answer The values of \( \theta \) that satisfy the equation are: \[ \theta = n\pi + \frac{\pi}{12} \quad \text{or} \quad \theta = n\pi + \frac{7\pi}{12} \quad \text{for } n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 1 : Single Option Correct Type (1 Mark))|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 Single Option Correct Type (1 Mark) )|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

Prove each of the following identities : ((1+ tan^(2) theta) cot theta)/("cosec"^(2) theta ) = tan theta

csc^(6)theta-cot^(6)theta=1+3csc^(2)theta cot^(2)theta

Prove that : (tan^(3) theta)/(1+tan^(2)theta) +(cot^(3)theta)/(1+cot^(2)theta) = sec theta "cosec " theta - 2 sin theta cos theta .

Prove that: ((1+ cot theta + tan theta)(sin theta - cos theta))/(sec^(3)theta - "cosec"^(3)theta) = sin^2 theta cos^2 theta

If cot^4 theta+ cot^2 theta=3 then cosec^4 theta- cosec^2 theta = ?

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

((1+tan^(2)theta)cot theta)/(csc^(2)theta)=tan theta