Home
Class 12
MATHS
(tantheta+sectheta-1)/(tantheta-sectheta...

`(tantheta+sectheta-1)/(tantheta-sectheta+1)=`

A

`(1-sintheta)/(costheta)`

B

`(1+sintheta)/(costheta)`

C

`(costheta)/(1-sintheta)`

D

`(costheta)/(1+sintheta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1}\), we will follow these steps: ### Step 1: Rewrite the expression using trigonometric identities We know that \(\sec^2 \theta - \tan^2 \theta = 1\). We can use this identity to manipulate the expression. ### Step 2: Substitute and simplify the denominator The denominator can be rewritten as: \[ \tan \theta - \sec \theta + 1 = \tan \theta - \sec \theta + \sec^2 \theta - \tan^2 \theta \] This simplifies to: \[ \tan \theta - \sec \theta + (1 - \tan^2 \theta) = \tan \theta - \sec \theta + 1 \] ### Step 3: Factor the numerator The numerator can be factored as follows: \[ \tan \theta + \sec \theta - 1 = (\sec \theta - \tan \theta)(\sec \theta + \tan \theta - 1) \] ### Step 4: Substitute back into the expression Now we can substitute the factored numerator and the rewritten denominator: \[ \frac{(\sec \theta - \tan \theta)(\sec \theta + \tan \theta - 1)}{\tan \theta - \sec \theta + 1} \] ### Step 5: Cancel out common terms Notice that \(\tan \theta - \sec \theta + 1\) can be rewritten as \(-(\sec \theta - \tan \theta - 1)\). Thus, we can cancel the common terms: \[ = \frac{\sec \theta + \tan \theta - 1}{-1} \] ### Step 6: Final simplification This simplifies to: \[ = -(\sec \theta + \tan \theta - 1) \] ### Step 7: Express in terms of sine and cosine Now, we can express \(\sec \theta\) and \(\tan \theta\) in terms of sine and cosine: \[ = -\left(\frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta} - 1\right) \] This gives us: \[ = -\left(\frac{1 + \sin \theta - \cos \theta}{\cos \theta}\right) \] ### Step 8: Final result Thus, the final result is: \[ \frac{\cos \theta}{1 - \sin \theta} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 1 : Single Option Correct Type (1 Mark))|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 Single Option Correct Type (1 Mark) )|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

(tantheta-sectheta)^2

sectheta/tantheta=?

Prove that : (tan theta)/(sectheta+1)-(tantheta)/(1-sectheta)=2cosec theta

The simplified value of (1+tantheta+sectheta)(1+cottheta-cosectheta) is

(1+cottheta-cosectheta)(1+tantheta+sectheta)=?

((1+tantheta+sectheta)(1+cottheta-cosectheta))/((sectheta+tantheta)(1-sintheta)) is equal to:

If sectheta = sqrt2 and (3pi)/(2) lt theta lt 2pi , find the value of (1+tantheta+cosectheta)/(1+sectheta-cosectheta)

tantheta-tantheta/2=sectheta/2

If theta epsilon (0, pi/2) then the value of |((sintheta+cosectheta)^2, (sintheta- cosectheta)^2,1 ),((costheta+sectheta)^2, (costheta-sectheta)^2, 1),((tantheta+cottheta)^2, (tantheta-cottheta)^2, 1)|= (A) sintheta+costhetas+tantheta (B) 1 (C) 0 (D) 4

Simplify tan theta [(sectheta,tantheta),(tantheta,-sectheta)]+sectheta[(-tantheta,-sectheta),(-sectheta,tantheta)]