Home
Class 12
MATHS
If (cosx-cosalpha)/(cosx-cosbeta)=(sin^(...

If `(cosx-cosalpha)/(cosx-cosbeta)=(sin^(2)alphacosbeta)/(sin^(2)betacosalpha)`, then

A

`cosx=(cosalpha+cosbeta)/(1+cosalphacosbeta)`

B

`cosx=(cosalpha+cosbeta)/(1-cosalphacosbeta)`

C

`"tan"(x)/(2)="tan"(alpha)/(2)"tan"(beta)/(2)`

D

`"tan"(x)/(2)=-"tan"(alpha)/(2)"tan"(beta)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 1 : Single Option Correct Type (1 Mark))|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 Single Option Correct Type (1 Mark) )|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

(1+cosalphacosbeta)^2-(cosalpha+cosbeta)^2=

intdx/(cosalpha+cosx)

(cosx)/(sqrt(4-sin^(2)x))

sin^(-1)(cosx)=

(cosalpha)/(cosbeta)=n and (sinalpha)/(sinbeta)=m , find (m^(2)-n^(2))sin^(2)beta

e^(x)((cosx-sinx)/(sin^(2)x))

int cosx/sin^(2)xdx

int(cosx)/(sin^(2)x)dx=

The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sinalpha,cosalpha,sinbeta),(-cosalpha,sinalpha,cosbeta):}| is independent of :-