Home
Class 12
MATHS
sinx=sinx^(@) if x=...

`sinx=sinx^(@)` if `x=`

A

`(180pi)/(180+pi)`

B

`(180pi)/(180-pi)`

C

`(360pi)/(180-pi)`

D

`(360pi)/(180+pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x = \sin x^\circ \), we will first convert \( x^\circ \) into radians and then apply the properties of the sine function. ### Step-by-step Solution: 1. **Convert Degrees to Radians**: We know that \( 180^\circ \) is equivalent to \( \pi \) radians. Therefore, to convert \( x^\circ \) to radians, we use the conversion factor: \[ x^\circ = \frac{\pi x}{180} \text{ radians} \] 2. **Set Up the Equation**: Now we can rewrite the equation: \[ \sin x = \sin\left(\frac{\pi x}{180}\right) \] 3. **Use the Sine Function Identity**: The sine function has the property that \( \sin A = \sin B \) implies: \[ A = n\pi + (-1)^n B \quad \text{for } n \in \mathbb{Z} \] Applying this to our equation gives: \[ x = n\pi + (-1)^n \left(\frac{\pi x}{180}\right) \] 4. **Solve for \( x \)**: Let's consider two cases for \( n \). - **Case 1**: Let \( n = 1 \) \[ x = \pi + \left(-1\right)\left(\frac{\pi x}{180}\right) \] Rearranging gives: \[ x + \frac{\pi x}{180} = \pi \] Factoring out \( x \): \[ x\left(1 + \frac{\pi}{180}\right) = \pi \] Thus, \[ x = \frac{\pi}{1 + \frac{\pi}{180}} = \frac{180\pi}{180 + \pi} \] - **Case 2**: Let \( n = 2 \) \[ x = 2\pi + \left(-1\right)\left(\frac{\pi x}{180}\right) \] Rearranging gives: \[ x + \frac{\pi x}{180} = 2\pi \] Factoring out \( x \): \[ x\left(1 + \frac{\pi}{180}\right) = 2\pi \] Thus, \[ x = \frac{2\pi}{1 + \frac{\pi}{180}} = \frac{360\pi}{360 + \pi} \] 5. **Final Solutions**: The solutions for \( x \) are: \[ x = \frac{180\pi}{180 + \pi} \quad \text{and} \quad x = \frac{360\pi}{360 + \pi} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 1 : Single Option Correct Type (1 Mark))|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 Single Option Correct Type (1 Mark) )|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

Solutions of sin^(-1)(sinx)=sinx" are if " x in (0,2pi)

x^(sinx)+(sinx)^(x)

The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c is the constant of integration)

If f(x) = (e^(x)-e^(sinx))/(2(x sinx)) , x != 0 is continuous at x = 0, then f(0) =

Differentiate x^(x)+(sinx)^(sinx) with respect to 'x'.

If f(sinx)-f(-sinx)=x^(2)-1 is defined for all x in R , then the value of x^(2)-2 can be

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to