Home
Class 12
MATHS
If (cosA)/(cosB)=(x)/(y), where A!=B, th...

If `(cosA)/(cosB)=(x)/(y)`, where `A!=B`, then

A

`(xtanA+ytanB)/(x+y)=tan((A+B)/(2))`

B

`(xtanA-ytanB)/(x+y)=tan((A-B)/(2))`

C

`(ysinA+xsinB)/(ysinA-xsinB)=(sin(A+B))/(sin(A-B))`

D

`xcosA+ycosB=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given that \(\frac{\cos A}{\cos B} = \frac{x}{y}\) where \(A \neq B\), we need to check the validity of the four options provided. ### Step-by-Step Solution #### Option 1: We need to verify if \[ \frac{x \tan A + y \tan B}{x + y} = \tan\left(\frac{A + B}{2}\right) \] 1. Start with the left-hand side (LHS): \[ \text{LHS} = \frac{x \tan A + y \tan B}{x + y} \] 2. Substitute \(\tan A = \frac{\sin A}{\cos A}\) and \(\tan B = \frac{\sin B}{\cos B}\): \[ = \frac{x \frac{\sin A}{\cos A} + y \frac{\sin B}{\cos B}}{x + y} \] 3. Now substitute \(x = k \cos A\) and \(y = k \cos B\) (where \(k\) is a constant): \[ = \frac{k \cos A \frac{\sin A}{\cos A} + k \cos B \frac{\sin B}{\cos B}}{k \cos A + k \cos B} \] 4. Simplifying gives: \[ = \frac{k \sin A + k \sin B}{k (\cos A + \cos B)} = \frac{\sin A + \sin B}{\cos A + \cos B} \] 5. Using the sine addition formula, we can express this as: \[ = \frac{2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)}{2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)} = \tan\left(\frac{A + B}{2}\right) \] Thus, Option 1 is **correct**. #### Option 2: We need to verify if \[ \frac{x \tan A - y \tan B}{x + y} = \tan\left(\frac{A - B}{2}\right) \] 1. Start with the left-hand side (LHS): \[ \text{LHS} = \frac{x \tan A - y \tan B}{x + y} \] 2. Substitute \(\tan A\) and \(\tan B\) as before: \[ = \frac{x \frac{\sin A}{\cos A} - y \frac{\sin B}{\cos B}}{x + y} \] 3. Again substitute \(x = k \cos A\) and \(y = k \cos B\): \[ = \frac{k \sin A - k \sin B}{k (\cos A + \cos B)} = \frac{\sin A - \sin B}{\cos A + \cos B} \] 4. Using the sine subtraction formula: \[ = \frac{2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right)}{2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)} = \tan\left(\frac{A - B}{2}\right) \] Thus, Option 2 is **correct**. #### Option 3: We need to verify if \[ \frac{y \sin A + x \sin B}{y \sin A - x \sin B} = \frac{\sin(A + B)}{\sin(A - B)} \] 1. Start with the left-hand side (LHS): \[ \text{LHS} = \frac{y \sin A + x \sin B}{y \sin A - x \sin B} \] 2. Substitute \(x = k \cos A\) and \(y = k \cos B\): \[ = \frac{k \cos B \sin A + k \cos A \sin B}{k \cos B \sin A - k \cos A \sin B} \] 3. This simplifies to: \[ = \frac{\cos B \sin A + \cos A \sin B}{\cos B \sin A - \cos A \sin B} \] 4. Using the sine addition and subtraction formulas: \[ = \frac{\sin(A + B)}{\sin(A - B)} \] Thus, Option 3 is **correct**. #### Option 4: We need to verify if \[ x \cos A + y \cos B = 0 \] 1. Substitute \(x = k \cos A\) and \(y = k \cos B\): \[ k \cos A \cos A + k \cos B \cos B = 0 \] 2. This simplifies to: \[ k(\cos^2 A + \cos^2 B) = 0 \] Since \(k\) cannot be zero, this equation does not hold true. Thus, Option 4 is **incorrect**. ### Final Conclusion - **Option 1**: Correct - **Option 2**: Correct - **Option 3**: Correct - **Option 4**: Incorrect
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 1 : Single Option Correct Type (1 Mark))|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 Single Option Correct Type (1 Mark) )|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In triangleABC , If cosA+cosB+cosC=(3)/(2) , then the triangle is

If cosA + cosB =4sin^(2)(C/2) , then

ln a DeltaABC , if (cosA)/a=(cosB)/b=(cosC)/c and the side a = 2, then area of the triangle is

If in DeltaABC,(cosA)/(a)=(cosB)/(b)=(cosC)/(c) and side a=2, then the area of the triangle is

If cos(A - B) = (3)/(5) and tanA tanB = 2, then the value of cosA cosB is _____

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is

if (x)/(2)=(cosA)/(cosB) then prove that (x tan A+y tan B)/(x+y)=tan""(A+B)/(2)