Home
Class 12
MATHS
If (3pi)/(2)ltAlt2pi and sinA=-7//25, th...

If `(3pi)/(2)ltAlt2pi` and `sinA=-7//25`, then

A

`sin2A=(336)/(625)`

B

`"cos"(A)/(2)=(sqrt(2))/(5)`

C

`"tan"A/2=-1/7`

D

`"tan"A/2=-(sqrt(2))/(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(\sin 2A\), \(\cos \frac{A}{2}\), and \(\tan \frac{A}{2}\) given that \(A\) is in the interval \(\left(\frac{3\pi}{2}, 2\pi\right)\) and \(\sin A = -\frac{7}{25}\). ### Step 1: Determine \(\cos A\) Since \(A\) is in the fourth quadrant, where cosine is positive, we can use the Pythagorean identity: \[ \sin^2 A + \cos^2 A = 1 \] Substituting \(\sin A = -\frac{7}{25}\): \[ \left(-\frac{7}{25}\right)^2 + \cos^2 A = 1 \] This simplifies to: \[ \frac{49}{625} + \cos^2 A = 1 \] \[ \cos^2 A = 1 - \frac{49}{625} = \frac{625 - 49}{625} = \frac{576}{625} \] Taking the square root (and considering that \(\cos A\) is positive in the fourth quadrant): \[ \cos A = \frac{24}{25} \] ### Step 2: Find \(\sin 2A\) Using the double angle formula for sine: \[ \sin 2A = 2 \sin A \cos A \] Substituting the values we found: \[ \sin 2A = 2 \left(-\frac{7}{25}\right) \left(\frac{24}{25}\right) \] Calculating this gives: \[ \sin 2A = 2 \cdot -\frac{7 \cdot 24}{625} = -\frac{336}{625} \] ### Step 3: Find \(\cos \frac{A}{2}\) Using the half-angle formula for cosine: \[ \cos \frac{A}{2} = \sqrt{\frac{1 + \cos A}{2}} \] Substituting \(\cos A = \frac{24}{25}\): \[ \cos \frac{A}{2} = \sqrt{\frac{1 + \frac{24}{25}}{2}} = \sqrt{\frac{\frac{49}{25}}{2}} = \sqrt{\frac{49}{50}} = \frac{7}{\sqrt{50}} = \frac{7\sqrt{2}}{10} \] ### Step 4: Find \(\tan \frac{A}{2}\) Using the half-angle formula for tangent: \[ \tan \frac{A}{2} = \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} \] We first need to find \(\sin \frac{A}{2}\): \[ \sin \frac{A}{2} = \sqrt{\frac{1 - \cos A}{2}} = \sqrt{\frac{1 - \frac{24}{25}}{2}} = \sqrt{\frac{\frac{1}{25}}{2}} = \sqrt{\frac{1}{50}} = \frac{1}{\sqrt{50}} = \frac{\sqrt{2}}{10} \] Now substituting into the tangent formula: \[ \tan \frac{A}{2} = \frac{\frac{\sqrt{2}}{10}}{\frac{7\sqrt{2}}{10}} = \frac{1}{7} \] Since \(A\) is in the fourth quadrant, \(\tan \frac{A}{2}\) will be negative: \[ \tan \frac{A}{2} = -\frac{1}{7} \] ### Final Answers: 1. \(\sin 2A = -\frac{336}{625}\) 2. \(\cos \frac{A}{2} = \frac{7\sqrt{2}}{10}\) 3. \(\tan \frac{A}{2} = -\frac{1}{7}\)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 1 : Single Option Correct Type (1 Mark))|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 Single Option Correct Type (1 Mark) )|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

If ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

If cos A=(7)/(25) and (3 pi)/2ltAlt2pi then cot((A)/(2))

If cos A=7/25 and 3pi/2ltAlt2pi ,then cot (A/2)=

If 0 lt A lt pi//2 and sinA + cosA + tan A + cotA + secA + cosec A=7 and sinA and cosA are roots of equation 4x^(2) - 3x +a=0 . Then value of 25a is:

If 0 lt a lt (pi)/(2) and sinA +cosA+tanA+cotA+secA+cosecA = 7, sinA and cosA are roots of equation 4x^(2) -3x +alpha = 0 , then the value of |(25alpha)/(4)| is _____________.

If sinA=3/5, 0 lt A lt pi/2 and cosB=-12/13, pi lt B lt (3pi)/2 , then find the values of the following: (i) sin(A-B)

Prove that: sqrt((1-sinA)/(1+sinA))={(secA-tanA,if -pi/2 lt A lt pi/2),(tanA-secA ,if pi/2 lt A lt (3pi)/2):}

If sinA = 3/5, then B = 1/2, pi/2