Home
Class 12
MATHS
The value of cos^(2)75^(@)+cos^(2)45^(@)...

The value of `cos^(2)75^(@)+cos^(2)45^(@)+cos^(2)15^(@)-cos^(2)30^(@)-cos^(2)60^(@)` is

A

0

B

1

C

`1//2`

D

`1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^2 75^\circ + \cos^2 45^\circ + \cos^2 15^\circ - \cos^2 30^\circ - \cos^2 60^\circ \), we will compute each cosine value and then substitute them into the equation. ### Step 1: Calculate \( \cos^2 75^\circ \) Using the identity \( \cos(90^\circ - \theta) = \sin(\theta) \): \[ \cos 75^\circ = \sin 15^\circ \] Thus, \[ \cos^2 75^\circ = \sin^2 15^\circ \] ### Step 2: Calculate \( \cos^2 45^\circ \) The value of \( \cos 45^\circ \) is: \[ \cos 45^\circ = \frac{1}{\sqrt{2}} \quad \Rightarrow \quad \cos^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] ### Step 3: Calculate \( \cos^2 15^\circ \) We will keep \( \cos^2 15^\circ \) as it is for now. ### Step 4: Calculate \( \cos^2 30^\circ \) The value of \( \cos 30^\circ \) is: \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \quad \Rightarrow \quad \cos^2 30^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] ### Step 5: Calculate \( \cos^2 60^\circ \) The value of \( \cos 60^\circ \) is: \[ \cos 60^\circ = \frac{1}{2} \quad \Rightarrow \quad \cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] ### Step 6: Substitute all values into the expression Now substituting back into the expression: \[ \sin^2 15^\circ + \frac{1}{2} + \cos^2 15^\circ - \frac{3}{4} - \frac{1}{4} \] ### Step 7: Simplify the expression Notice that \( \sin^2 15^\circ + \cos^2 15^\circ = 1 \): \[ 1 + \frac{1}{2} - \frac{3}{4} - \frac{1}{4} = 1 + \frac{1}{2} - 1 = \frac{1}{2} \] ### Final Answer Thus, the value of the expression is: \[ \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 One or More than One Option Correct Type (2 Mark))|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

The value of sin^(2)30^(@)cos^(2)45^(@)

cos^(2)75^(0)+cos^(2)15^(0)-cos75^(0)cos15^(0)=

Evaluate: sin^(2)60^(@) cos^(2)45^(@) cos^(2)60^(@)" cosec"^(2)90^(@)

The value of (cos^(2)60^(@)+4sec^(2)30^(@)-tan^(2)45^(@))/(sin^(2)30^(@)+cos^(2)30^(@)) is

cos^(2)5^(@) +cos^(2)10^(@) + cos^(2) 15^(@) +…..+cos^(2) 85^(@) + cos^(2) 90^(@) is equal to

Evaluate sin^(2)45^(@)+cos^(2)60^(@)+cosec^(2)30^(@) .

The value of sin^(2)30^(@).cos^(2)45^(@)+2tan^(2)30^(@)-sec^(2)60^(@) is equal to :

cos^(2)30^@-sin^(2)30^@=cos60^@