Home
Class 12
MATHS
Let f(theta)=(1+sin^(2)theta)(2-sin^(2)t...

Let `f(theta)=(1+sin^(2)theta)(2-sin^(2)theta)`. Then for all values of `theta`

A

`f(theta)gt(9)/(4)`

B

`f(theta)lt2`

C

`f(theta)gt(11)/(4)`

D

`2lef(theta)le(9)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(\theta) = (1 + \sin^2 \theta)(2 - \sin^2 \theta) \). ### Step-by-Step Solution: 1. **Expand the Function**: \[ f(\theta) = (1 + \sin^2 \theta)(2 - \sin^2 \theta) \] Expanding this, we get: \[ f(\theta) = 1 \cdot 2 + 1 \cdot (-\sin^2 \theta) + \sin^2 \theta \cdot 2 - \sin^4 \theta \] \[ = 2 - \sin^2 \theta + 2\sin^2 \theta - \sin^4 \theta \] \[ = 2 + \sin^2 \theta - \sin^4 \theta \] 2. **Rewrite the Function**: We can rewrite \( \sin^4 \theta \) as \( (\sin^2 \theta)^2 \): \[ f(\theta) = 2 + \sin^2 \theta (1 - \sin^2 \theta) \] Let \( x = \sin^2 \theta \). Then, the function becomes: \[ f(\theta) = 2 + x(1 - x) \] 3. **Find the Range of \( x \)**: Since \( \sin^2 \theta \) varies between 0 and 1, we have: \[ 0 \leq x \leq 1 \] 4. **Analyze the Expression \( x(1 - x) \)**: The expression \( x(1 - x) \) is a quadratic function that opens downwards. Its maximum occurs at \( x = \frac{1}{2} \): \[ x(1 - x) = \frac{1}{2} \left(1 - \frac{1}{2}\right) = \frac{1}{4} \] 5. **Calculate the Minimum and Maximum Values of \( f(\theta) \)**: - **Minimum Value**: When \( x = 0 \): \[ f(\theta) = 2 + 0 = 2 \] - **Maximum Value**: When \( x = \frac{1}{2} \): \[ f(\theta) = 2 + \frac{1}{4} = \frac{9}{4} \] 6. **Conclusion**: Thus, the function \( f(\theta) \) lies between 2 and \( \frac{9}{4} \): \[ 2 \leq f(\theta) \leq \frac{9}{4} \] ### Final Answer: The correct option is that \( f(\theta) \) lies between 2 and \( \frac{9}{4} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 One or More than One Option Correct Type (2 Mark))|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

If A= cos^(4)theta+sin^(2)theta , then for all values of theta :

If A=sin^(2)theta+cos^(4)theta, then for all real values of theta

Prove that: |sin theta sin(60-theta)sin(60+theta)|<=(1)/(4) for all values of theta

The value of the determinant |{:("cos"^(2)(theta)/(2),"sin"^(2)(theta)/(2)),("sin"^(2)(theta)/(2),"cos"^(2)(theta)/(2)):}| for all values of theta , is

The value of the determinants |("cos"^(2)(theta)/(2),"sin"^(2)(theta)/(2)),("sin"^(2) (theta)/(2),"cos"^(2) (theta)/(2))| for all values of theta , is :

Let f(theta)=sin theta(sin theta+sin3 theta)* then

If sin theta_(1)+sin theta_(2)+sin theta_(3), then find the value of cos theta_(1)+cos theta_(2)+cos theta_(3)