Home
Class 12
MATHS
{x inR" :"|cosx|gesinx}nn[0,(3pi)/(2)]=...

`{x inR" :"|cosx|gesinx}nn[0,(3pi)/(2)]=`

A

`[0,(pi)/(4)]uu[(3pi)/(4),(3pi)/(2)]`

B

`[0,(pi)/(4)]uu[(pi)/(2),(3pi)/(2)]`

C

`[0,pi/4]uu[(5pi)/(4),(3pi)/(2)]`

D

`[0,(3pi)/(2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem `{x in R : |cos x| ≥ sin x} ∩ [0, (3π)/2]`, we will follow these steps: ### Step 1: Understand the inequality We need to find the values of \( x \) such that \( |cos x| \geq sin x \). This means we need to analyze the graphs of \( |cos x| \) and \( sin x \). ### Step 2: Analyze the graphs 1. **Graph of \( |cos x| \)**: - The function \( cos x \) oscillates between -1 and 1. - The graph of \( |cos x| \) will reflect the negative part of \( cos x \) above the x-axis, thus it will always be non-negative. 2. **Graph of \( sin x \)**: - The function \( sin x \) starts at 0, reaches 1 at \( \frac{\pi}{2} \), and goes back to 0 at \( \pi \), then goes negative until \( \frac{3\pi}{2} \). ### Step 3: Find points of intersection To find where \( |cos x| = sin x \): - Set \( cos x = sin x \) and solve for \( x \): \[ \tan x = 1 \implies x = \frac{\pi}{4} + n\pi \] In the interval \( [0, \frac{3\pi}{2}] \), this gives us \( x = \frac{\pi}{4} \). - Set \( -cos x = sin x \) (since \( |cos x| \) can be negative): \[ -cos x = sin x \implies cos x = -sin x \implies \tan x = -1 \implies x = \frac{3\pi}{4} + n\pi \] In the interval \( [0, \frac{3\pi}{2}] \), this gives us \( x = \frac{3\pi}{4} \). ### Step 4: Determine intervals Now we need to determine the intervals where \( |cos x| \geq sin x \): 1. From \( 0 \) to \( \frac{\pi}{4} \), \( |cos x| \) is greater than \( sin x \). 2. From \( \frac{\pi}{4} \) to \( \frac{3\pi}{4} \), \( |cos x| \) is less than \( sin x \). 3. From \( \frac{3\pi}{4} \) to \( \frac{3\pi}{2} \), \( |cos x| \) is greater than \( sin x \). ### Step 5: Combine intervals The solution set where \( |cos x| \geq sin x \) in the interval \( [0, \frac{3\pi}{2}] \) is: \[ [0, \frac{\pi}{4}] \cup [\frac{3\pi}{4}, \frac{3\pi}{2}] \] ### Final Answer Thus, the final answer is: \[ \{ x \in [0, \frac{3\pi}{2}] : |cos x| \geq sin x \} = [0, \frac{\pi}{4}] \cup [\frac{3\pi}{4}, \frac{3\pi}{2}] \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 One or More than One Option Correct Type (2 Mark))|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

0

What is geometrical significance of (i) int_(0)^(pi) |cosx| dx , (ii) int_(0)^((3pi)/(2)) cosx dx

If f(x)={((cosx+3 sinx)^(5 "cosec"x)",",x in ((-pi)/(2),(pi)/(2))-{0}),(lambda",", x =0):} is continuous at x = 0, then lambda will be

If S={x epsilon [0,2pi]:|(0,cosx,-sinx),(sinx,0,cosx),(cosx,sinx,0)|=0} then sum_(xepsilonS)tan((pi)/3+x) is equal to

Statement-1: f(x ) = log_( cosx)sinx is well defined in (0,pi/2) . and Statement:2 sinx and cosx are positive in (0,pi/2)

Solve |sinx +cos x |=|sinx|+|cosx|, x in [0,2pi] .

Simplify tan^-1 (cosx/(1-sinx)) , for (-3pi)/2 < x< pi/2' .

If 0 lt x lt pi and cosx+sinx = (1)/(2) , then tanx is :

Find the number of solution of the equation x^(3)+2x+cosx+tanx=0 in (-(pi)/(2),(pi)/(2))

Let f(x)={:{(x^(2)+4x",",-3lexle0),(-sinx",",0ltxle(pi)/(2)),(-cosx-1",",(pi)/(2)ltxlepi):} then