Home
Class 12
MATHS
If e^(sinx)-e^(-sinx)-4=0, then the numb...

If `e^(sinx)-e^(-sinx)-4=0`, then the number of real values of x is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( e^{\sin x} - e^{-\sin x} - 4 = 0 \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ e^{\sin x} - e^{-\sin x} - 4 = 0 \] We can rewrite \( e^{-\sin x} \) as \( \frac{1}{e^{\sin x}} \): \[ e^{\sin x} - \frac{1}{e^{\sin x}} - 4 = 0 \] ### Step 2: Multiply through by \( e^{\sin x} \) To eliminate the fraction, we multiply through by \( e^{\sin x} \): \[ (e^{\sin x})^2 - 1 - 4e^{\sin x} = 0 \] This simplifies to: \[ (e^{\sin x})^2 - 4e^{\sin x} - 1 = 0 \] ### Step 3: Substitute \( p = e^{\sin x} \) Let \( p = e^{\sin x} \). Then the equation becomes: \[ p^2 - 4p - 1 = 0 \] ### Step 4: Use the Quadratic Formula We can solve this quadratic equation using the quadratic formula: \[ p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -4, c = -1 \): \[ p = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ p = \frac{4 \pm \sqrt{16 + 4}}{2} \] \[ p = \frac{4 \pm \sqrt{20}}{2} \] \[ p = \frac{4 \pm 2\sqrt{5}}{2} \] \[ p = 2 \pm \sqrt{5} \] ### Step 5: Determine the Values of \( p \) Thus, we have two potential values for \( p \): \[ p_1 = 2 + \sqrt{5}, \quad p_2 = 2 - \sqrt{5} \] ### Step 6: Evaluate the Range of \( p \) Since \( p = e^{\sin x} \), we know that \( p \) must be positive. The range of \( e^{\sin x} \) is \( \left(\frac{1}{e}, e\right) \). Now, we evaluate: 1. \( p_1 = 2 + \sqrt{5} \): - Since \( \sqrt{5} \approx 2.236 \), then \( p_1 \approx 4.236 \), which is greater than \( e \) (approximately 2.718). 2. \( p_2 = 2 - \sqrt{5} \): - Since \( \sqrt{5} \approx 2.236 \), then \( p_2 \approx -0.236 \), which is negative. ### Step 7: Conclusion Neither \( p_1 \) nor \( p_2 \) lies within the range \( \left(\frac{1}{e}, e\right) \). Therefore, there are no real values of \( x \) that satisfy the original equation. ### Final Answer The number of real values of \( x \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 One or More than One Option Correct Type (2 Mark))|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

e^(sinx)sin(e^(x))

Show that the equation e^(sinx)-e^(-sin x)-4=0 has no real solution.

(e^(x) sinx)/(secx)

The equation e^(sinx)-e^(-sinx)-4=0 has (A) non real roots (B) integral roots (C) rational roots (D) real and unequal roots

(e^(x))/(sinx)

y=e^(sinx)+(tanx)^(x)