Home
Class 12
MATHS
Minimum value of 2^(sinx)+2^(cosx) is...

Minimum value of `2^(sinx)+2^(cosx)` is

A

`2^(1-1//sqrt(2))`

B

`2^(1+1//sqrt(2))`

C

`2^(sqrt(2))`

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 1 : Single Option Correct Type (1 Mark))|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos

Similar Questions

Explore conceptually related problems

If 0ltxlt(pi)/(2) , then the minimum value of (sinx+cosx+cosec2x) ,is

find least value of 2^sinx +2^cosx

The least value of 2^(sinx)+2^(cosx) , is

If 0ltxlt(pi)/(2) , then the minimum value of 2(sinx+cosx+cosec 2x)^3 is

The minimum value of |sinx+cosx+(cosx+sinx)/(cos^(4)x-sin^(4)x)| is

If 0ltxlt(pi)/(2) then the minimum value of (cos^(3)x)/(sinx)+(sin^(3))/(cosx)(x)/(x) , is

Show that The maximum value of sinx. cosx in R is 1/2

The maximum values of sinx(1+cosx) will be at the

If sinx-cosx=1,where'x'is an acute angle,the value of (sinx+cosx) is: