Home
Class 12
MATHS
The equation 2 cos^(-1)x=sin^(-1)(2x sqr...

The equation `2 cos^(-1)x=sin^(-1)(2x sqrt(1-x^(2)))` is valid for all values of x satisfying

A

`-1 le x le 1`

B

`0 le x le 1`

C

`0 le x le 1// sqrt(2)`

D

`1//sqrt(2) le x le 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \cos^{-1} x = \sin^{-1}(2x \sqrt{1 - x^2}) \), we will follow these steps: ### Step 1: Let \( \theta = \cos^{-1} x \) From this, we can express \( x \) in terms of \( \theta \): \[ x = \cos \theta \] ### Step 2: Substitute \( x \) in the equation Substituting \( x = \cos \theta \) into the equation gives: \[ 2\theta = \sin^{-1}(2 \cos \theta \sqrt{1 - \cos^2 \theta}) \] ### Step 3: Simplify the right-hand side Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we have: \[ \sqrt{1 - \cos^2 \theta} = \sin \theta \] Thus, the right-hand side becomes: \[ \sin^{-1}(2 \cos \theta \sin \theta) \] ### Step 4: Use the double angle identity Recall that \( 2 \cos \theta \sin \theta = \sin(2\theta) \). Therefore, we can rewrite the equation as: \[ 2\theta = \sin^{-1}(\sin(2\theta)) \] ### Step 5: Analyze the sine inverse function The function \( \sin^{-1}(y) \) gives us \( y \) in the range \([- \frac{\pi}{2}, \frac{\pi}{2}]\). Therefore, for \( \sin^{-1}(\sin(2\theta)) \) to equal \( 2\theta \), we need: \[ 2\theta = 2n\pi + (-1)^n(2\theta) \quad \text{for some integer } n \] This means \( 2\theta \) must lie within the range of \( \sin^{-1} \). ### Step 6: Determine the range of \( \theta \) Since \( \theta = \cos^{-1} x \), it follows that: \[ 0 \leq \theta \leq \pi \] Thus, \( 0 \leq 2\theta \leq 2\pi \). ### Step 7: Find the valid range for \( x \) For \( 2\theta \) to remain within the range of \( \sin^{-1} \), we need: \[ -1 \leq 2 \cos \theta \sqrt{1 - \cos^2 \theta} \leq 1 \] This condition is satisfied when \( x \) lies within the interval: \[ -\frac{1}{2} \leq x \leq \frac{1}{2} \] ### Conclusion The equation \( 2 \cos^{-1} x = \sin^{-1}(2x \sqrt{1 - x^2}) \) is valid for all values of \( x \) satisfying: \[ -\frac{1}{2} \leq x \leq \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks))|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

The equation 2cos^(-1)x=cos^(-1)(2x^(2)-1) is satisfied by

The equation 2^(1+cos2x)*sin^(2)x+2sin^(2)2x+2cos2x=2 is satisfied for -

cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

If a,b are real and a^(2)+b^(2)=1, then show that the equation (sqrt(1+x)-i sqrt(1-x))/(sqrt(1+x)+i sqrt(1-x))=a-ib is satisfied y a real value of x.

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

The equation 3^("sin"2x + 2"cos"^(2)x) + 3^(1-"sin"2x +2"sin"^(2)x) = 28 is satisfied for the values of x given by

The values of x satisfying the equation 2tan^(-1)(3x)=sin^(-1)((6x)/(1+9x^(2))) is equal to