Home
Class 12
MATHS
If cos^(-1)x=tan^(-1)x, then sin(cos^(-1...

If `cos^(-1)x=tan^(-1)x`, then `sin(cos^(-1)x)=`

A

`x`

B

`x^(2)`

C

`1//x`

D

`1//x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1} x = \tan^{-1} x \) and find \( \sin(\cos^{-1} x) \), we can follow these steps: ### Step 1: Set up the equation Let \( y = \cos^{-1} x \). Therefore, we can write: \[ y = \tan^{-1} x \] ### Step 2: Express \( x \) in terms of \( y \) From the definition of the inverse cosine function, we have: \[ \cos y = x \] From the definition of the inverse tangent function, we have: \[ \tan y = x \] ### Step 3: Relate \( \tan y \) and \( \cos y \) Recall that: \[ \tan y = \frac{\sin y}{\cos y} \] Substituting \( \cos y = x \) into the equation gives: \[ \tan y = \frac{\sin y}{x} \] Since we also know \( \tan y = x \), we can set the two expressions for \( \tan y \) equal to each other: \[ x = \frac{\sin y}{x} \] ### Step 4: Solve for \( \sin y \) Multiplying both sides by \( x \) (assuming \( x \neq 0 \)): \[ x^2 = \sin y \] ### Step 5: Find \( \sin(\cos^{-1} x) \) Since we have established that \( y = \cos^{-1} x \), we can write: \[ \sin(\cos^{-1} x) = \sin y = x^2 \] ### Conclusion Thus, the final answer is: \[ \sin(\cos^{-1} x) = x^2 \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks))|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

For some x in [-1, 1] we have cos^(-1)x =tan^(-1)x . The value of sin(cos^(-1)x) is:

tan(sin^(-1)x+cos^(-1)x)

The value of tan(sin^(-1)(cos(sin^(-1)x)))tan(cos^(-1)(sin(cos^(-1)x))), where x in(0,1) is equal to 0(b)1(c)-1(d) none of these

sin(sin^(-1)x)=x;cos(cos^(-1)x)=x;tan(tan^(-1)x)=x;cot(cot^(-1)x)=x;sec(sec^(-1)x)=x;cos ec(cos ec^(-1)x)

sin {cot^(-1)[tan (cos^(-1)x)]=

If 2tan^(-1)(cos x)=tan^(-1)(2cos ecx) then sin x+cos x=

If A=sin[cot^(-1){cos(tan^(-1)x)}], then

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

If alpha=sin^(-1)(cos(sin^(-1)x)) and beta=cos^(-1)(sin(cos^(-1)x)) then find tan alpha.tan beta