Home
Class 12
MATHS
Let tan^(-1) ( tan. (5pi)/(4))=alpha, ta...

Let `tan^(-1) ( tan. (5pi)/(4))=alpha, tan^(-1) (-tan. (2pi)/(3))=beta`, then

A

`alpha gt beta`

B

`4 alpha- 3 beta = 0`

C

`alpha + beta = ( 7 pi)/(12)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \alpha \) and \( \beta \) and then establish the relationship between them. ### Step 1: Calculate \( \alpha \) Given: \[ \alpha = \tan^{-1}(\tan(5\pi/4)) \] We can express \( 5\pi/4 \) as: \[ 5\pi/4 = \pi + \pi/4 \] Using the property of the tangent function, we know: \[ \tan(\pi + x) = \tan(x) \] Thus, \[ \tan(5\pi/4) = \tan(\pi/4) \] Now, since \( \tan(\pi/4) = 1 \), we have: \[ \tan(5\pi/4) = 1 \] Now substituting back into our equation for \( \alpha \): \[ \alpha = \tan^{-1}(1) \] \[ \alpha = \frac{\pi}{4} \] ### Step 2: Calculate \( \beta \) Given: \[ \beta = \tan^{-1}(-\tan(2\pi/3)) \] We can express \( 2\pi/3 \) as: \[ 2\pi/3 = \pi - \pi/3 \] Using the property of the tangent function: \[ \tan(\pi - x) = -\tan(x) \] Thus, \[ \tan(2\pi/3) = -\tan(\pi/3) \] Since \( \tan(\pi/3) = \sqrt{3} \), we have: \[ \tan(2\pi/3) = -\sqrt{3} \] Now substituting back into our equation for \( \beta \): \[ \beta = \tan^{-1}(-(-\sqrt{3})) = \tan^{-1}(\sqrt{3}) \] \[ \beta = \frac{\pi}{3} \] ### Step 3: Establish the relationship between \( \alpha \) and \( \beta \) From our calculations, we have: \[ \alpha = \frac{\pi}{4} \] \[ \beta = \frac{\pi}{3} \] Now, we can find a relationship between \( \alpha \) and \( \beta \): \[ \pi = 4\alpha \quad \text{and} \quad \pi = 3\beta \] Setting these equal gives: \[ 4\alpha = 3\beta \] ### Final Answer Thus, the relationship between \( \alpha \) and \( \beta \) is: \[ 4\alpha - 3\beta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks))|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(tan((5 pi)/(3)))

Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan . (2pi)/3) then

If alpha=tan^(-1)(tan(5 pi)/(4)) and beta=tan^(-1)(-tan(2 pi)/(3)), then 4 alpha=3 beta(b)3 alpha=4 beta(c)alpha-beta=74 alpha=(3 beta)/(12) none of these

tan x+(tan((pi)/(4))+tan x)/(1-tan((pi)/(4))tan x)=2

tan(pi/4)tan((3pi)/4)+1=?

Show taht 2tan ^ (- 1) (tan ((alpha) / (2)) tan ((pi) / (4) - (beta) / (2))) = tan ^ (- 1) ((sin alpha cos beta) / (cos alpha + sin beta))

Consider the following : 1. tan((pi)/(6)) 2. tan((3pi)/(4)) 3. tan((5pi)/(4)) tan((2pi)/(3)) What is the correct order ?

Consider the following: I. tan((pi)/(6)) II. tan((3pi)/(4)) III. tan((5pi)/(4)) IV. tan((2pi)/(3)) Which one of the following is the correct order?