Home
Class 12
MATHS
Sum of series sum(r=1)^(n)sin^(-1)[(2r...

Sum of series
`sum_(r=1)^(n)sin^(-1)[(2r+1)/(r(r+1)(sqrt(r^(2)+2r)+sqrt(r^(2)-1)))]`

A

`pi/2 - sin^(-1) ((1)/(n+1))`

B

`cos^(-1) ((1)/(n+1))`

C

`pi/2 -cos^(-1) ((1)/(n+1))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \[ S = \sum_{r=1}^{n} \sin^{-1}\left(\frac{2r + 1}{r(r + 1)(\sqrt{r^2 + 2r} + \sqrt{r^2 - 1})}\right), \] we will analyze the term inside the summation step by step. ### Step 1: Simplifying the Argument of the Inverse Sine We start with the expression inside the sine inverse: \[ \frac{2r + 1}{r(r + 1)(\sqrt{r^2 + 2r} + \sqrt{r^2 - 1})}. \] We can simplify the denominator: \[ \sqrt{r^2 + 2r} = \sqrt{(r + 1)^2} = r + 1, \] and \[ \sqrt{r^2 - 1} = \sqrt{(r - 1)(r + 1)}. \] Thus, we rewrite the expression as: \[ \frac{2r + 1}{r(r + 1)(r + 1 + \sqrt{(r - 1)(r + 1})}. \] ### Step 2: Rationalizing the Denominator Next, we rationalize the denominator. We multiply the numerator and denominator by the conjugate of the denominator: \[ \sqrt{r^2 + 2r} - \sqrt{r^2 - 1}. \] This gives us: \[ \frac{(2r + 1)(\sqrt{r^2 + 2r} - \sqrt{r^2 - 1})}{r(r + 1)((r + 1)^2 - (r^2 - 1))}. \] The denominator simplifies to: \[ (r + 1)^2 - (r^2 - 1) = 2r + 2. \] ### Step 3: Simplifying Further The expression now looks like: \[ \frac{(2r + 1)(\sqrt{r^2 + 2r} - \sqrt{r^2 - 1})}{r(r + 1)(2r + 2)}. \] ### Step 4: Using the Identity for Sine Inverse We can use the identity for the difference of sine inverses: \[ \sin^{-1}(x) - \sin^{-1}(y) = \sin^{-1}\left(\frac{x - y}{\sqrt{1 - x^2}\sqrt{1 - y^2}}\right). \] Let \(x = \frac{1}{r}\) and \(y = \frac{1}{r + 1}\). Thus, we can express the series as: \[ S = \sum_{r=1}^{n} \left(\sin^{-1}\left(\frac{1}{r}\right) - \sin^{-1}\left(\frac{1}{r + 1}\right)\right). \] ### Step 5: Telescoping Series This is a telescoping series. Most terms cancel out, leaving us with: \[ S = \sin^{-1}(1) - \sin^{-1}\left(\frac{1}{n + 1}\right). \] ### Step 6: Final Calculation Since \(\sin^{-1}(1) = \frac{\pi}{2}\), we have: \[ S = \frac{\pi}{2} - \sin^{-1}\left(\frac{1}{n + 1}\right). \] ### Conclusion Thus, the final result for the sum of the series is: \[ \boxed{S = \frac{\pi}{2} - \sin^{-1}\left(\frac{1}{n + 1}\right)}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks))|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

Sum of the series sum_(r=1)^(n)(r^(2)+1)r!, is

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to

Find the sum sum_(r =1)^(oo) tan^(-1) ((2(2r -1))/(4 + r^(2) (r^(2) -2r + 1)))

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to:

sum_(r=1)^(n)(1)/((r+1)(r+2))*^(n+3)C_(r)=

sum_(r=1)^(20) r (2r+1)=