Home
Class 12
MATHS
Let f(x)=e^(cos^(-1)sin(x+ pi/3)), then...

Let `f(x)=e^(cos^(-1)sin(x+ pi/3))`, then

A

`f((8 pi)/(9))= e^((5pi)/(18))`

B

`f((8pi)/(9))= e^((13pi)/(18))`

C

`f(-(7pi)/(4))=e^((pi)/(12))`

D

`f(-(7pi)/(4))=e^((11pi)/(12))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) = e^{\cos^{-1}(\sin(x + \frac{\pi}{3}))} \) for \( x = \frac{8\pi}{9} \) and \( x = -\frac{7\pi}{4} \). ### Step 1: Evaluate \( f\left(\frac{8\pi}{9}\right) \) 1. **Substitute \( x = \frac{8\pi}{9} \) into the function:** \[ f\left(\frac{8\pi}{9}\right) = e^{\cos^{-1}(\sin(\frac{8\pi}{9} + \frac{\pi}{3}))} \] 2. **Calculate \( \frac{8\pi}{9} + \frac{\pi}{3} \):** \[ \frac{\pi}{3} = \frac{3\pi}{9} \quad \Rightarrow \quad \frac{8\pi}{9} + \frac{3\pi}{9} = \frac{11\pi}{9} \] 3. **Find \( \sin\left(\frac{11\pi}{9}\right) \):** \[ \sin\left(\frac{11\pi}{9}\right) = -\sin\left(\frac{11\pi}{9} - \pi\right) = -\sin\left(\frac{2\pi}{9}\right) \] 4. **Now substitute back into the function:** \[ f\left(\frac{8\pi}{9}\right) = e^{\cos^{-1}(-\sin\left(\frac{2\pi}{9}\right))} \] 5. **Use the identity \( \cos^{-1}(-y) = \pi - \cos^{-1}(y) \):** \[ f\left(\frac{8\pi}{9}\right) = e^{\pi - \cos^{-1}(\sin\left(\frac{2\pi}{9}\right))} \] 6. **Since \( \cos^{-1}(\sin\theta) = \frac{\pi}{2} - \theta \):** \[ \cos^{-1}(\sin\left(\frac{2\pi}{9}\right)) = \frac{\pi}{2} - \frac{2\pi}{9} = \frac{9\pi}{18} - \frac{4\pi}{18} = \frac{5\pi}{18} \] 7. **Thus, we have:** \[ f\left(\frac{8\pi}{9}\right) = e^{\pi - \frac{5\pi}{18}} = e^{\frac{18\pi}{18} - \frac{5\pi}{18}} = e^{\frac{13\pi}{18}} \] ### Step 2: Evaluate \( f\left(-\frac{7\pi}{4}\right) \) 1. **Substitute \( x = -\frac{7\pi}{4} \) into the function:** \[ f\left(-\frac{7\pi}{4}\right) = e^{\cos^{-1}(\sin(-\frac{7\pi}{4} + \frac{\pi}{3}))} \] 2. **Calculate \( -\frac{7\pi}{4} + \frac{\pi}{3} \):** \[ -\frac{7\pi}{4} + \frac{\pi}{3} = -\frac{21\pi}{12} + \frac{4\pi}{12} = -\frac{17\pi}{12} \] 3. **Find \( \sin\left(-\frac{17\pi}{12}\right) \):** \[ \sin\left(-\frac{17\pi}{12}\right) = -\sin\left(\frac{17\pi}{12}\right) \] 4. **Now substitute back into the function:** \[ f\left(-\frac{7\pi}{4}\right) = e^{\cos^{-1}(-\sin\left(\frac{17\pi}{12}\right))} \] 5. **Use the identity \( \cos^{-1}(-y) = \pi - \cos^{-1}(y) \):** \[ f\left(-\frac{7\pi}{4}\right) = e^{\pi - \cos^{-1}(\sin\left(\frac{17\pi}{12}\right))} \] 6. **Now find \( \cos^{-1}(\sin\left(\frac{17\pi}{12}\right)) \):** - Since \( \frac{17\pi}{12} = \pi + \frac{5\pi}{12} \), we have: \[ \sin\left(\frac{17\pi}{12}\right) = -\sin\left(\frac{5\pi}{12}\right) \] - Thus: \[ \cos^{-1}(-\sin\left(\frac{5\pi}{12}\right)) = \pi - \left(\frac{\pi}{2} - \frac{5\pi}{12}\right) = \frac{5\pi}{12} \] 7. **Thus, we have:** \[ f\left(-\frac{7\pi}{4}\right) = e^{\pi - \frac{5\pi}{12}} = e^{\frac{12\pi}{12} - \frac{5\pi}{12}} = e^{\frac{7\pi}{12}} \] ### Final Results - \( f\left(\frac{8\pi}{9}\right) = e^{\frac{13\pi}{18}} \) - \( f\left(-\frac{7\pi}{4}\right) = e^{\frac{7\pi}{12}} \)
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks))|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = x cos^(-1)(sin-|x|) , x in (-pi/2,pi/2)

Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

Statement 1: Let f(x)=sin(cos x) in [0,(pi)/(2)]* Then f(x) is decreasing in [0,(pi)/(2)] Statement 2:cos x is a decreasing function AA x in[0,(pi)/(2)]

Let f(x)=min{1,cos x,(1-sin x)}, then total number of points of non differentiability in (-(pi)/(4),(3 pi)/(4)),f(x) is

If f(x)=cos^-1(sin(4cos^2x-1)), then 1/pif'(pi/3).f(pi/10) is

Let f(x)=sin^(3)x+sin^(3)(x+(2 pi)/(3))+sin^(3)(x+(4 pi)/(3)) then the primitive of f(x)w.r.t.x is

Let f(x)=(x^(2)-1)(pi-e^(x)) then

Let f(x)=(x^(2)-1)(pi-e^(x)) then

Let f(x)=sin x+2cos^(2)x,x in[(pi)/(6),(2 pi)/(3)] then maximum value of f(x) is

Let f(sin x)=(1-sin^(5)x)^((1)/(5)) then what is the value of f(f(cos x))