Home
Class 12
MATHS
If 0 lt x lt 1", then " sqrt(1+x^(2))[...

If `0 lt x lt 1", then " sqrt(1+x^(2))[{x cos (cot^(-1)x) + sin ( cot^(-1) x)}^(2) -1]^(1//2) ` is equal to

A

`(x)/(sqrt(1+x^(2)))`

B

`x`

C

`xsqrt(1+x^(2))`

D

`sqrt(1+x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks))|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

If 0

If 0ltxlt1 then sqrt(1+x^(2))[{x cos (cot^(-1)x)+sin(cot^(-1)x}^(2)-1]^(1/2)

If [ x cos ( cot^(-1) x ) + sin ( cot^(-1) x) ]^(2) = (51)/(50) then the positive value of x is

If -1 lt x lt 0 then sin^(-1) x equals-

If -1 lt x lt 0 , then cos^(-1) x is equal to

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Lt_(x rarr1)(1-sqrt(x))/((cos^(-1)x)^(2)) is equal to

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))