Home
Class 12
MATHS
If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(...

If `alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3)` then

A

`alpha gt beta`

B

`alpha = beta`

C

`alpha lt beta`

D

`alpha + beta =2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given, we need to evaluate the expressions for \( \alpha \) and \( \beta \) and then find their relationship. ### Step 1: Evaluate \( \alpha \) Given: \[ \alpha = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) + \sin^{-1}\left(\frac{1}{3}\right) \] From trigonometric values, we know: \[ \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \] Let: \[ y = \sin^{-1}\left(\frac{1}{3}\right) \] Thus, we can rewrite \( \alpha \) as: \[ \alpha = \frac{\pi}{3} + y \] ### Step 2: Evaluate \( \beta \) Given: \[ \beta = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{1}{3}\right) \] From trigonometric values, we know: \[ \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} \] Let: \[ z = \cos^{-1}\left(\frac{1}{3}\right) \] Thus, we can rewrite \( \beta \) as: \[ \beta = \frac{\pi}{6} + z \] ### Step 3: Relationship between \( \alpha \) and \( \beta \) Now, we need to find the relationship between \( \alpha \) and \( \beta \): \[ \alpha = \frac{\pi}{3} + y \] \[ \beta = \frac{\pi}{6} + z \] ### Step 4: Find \( \alpha + \beta \) Adding \( \alpha \) and \( \beta \): \[ \alpha + \beta = \left(\frac{\pi}{3} + y\right) + \left(\frac{\pi}{6} + z\right) \] To add \( \frac{\pi}{3} \) and \( \frac{\pi}{6} \), we find a common denominator: \[ \frac{\pi}{3} = \frac{2\pi}{6} \] Thus: \[ \alpha + \beta = \frac{2\pi}{6} + \frac{\pi}{6} + y + z = \frac{3\pi}{6} + y + z = \frac{\pi}{2} + y + z \] ### Step 5: Evaluate \( y + z \) Since \( y = \sin^{-1}\left(\frac{1}{3}\right) \) and \( z = \cos^{-1}\left(\frac{1}{3}\right) \), we know: \[ y + z = \frac{\pi}{2} \] ### Step 6: Substitute back Substituting back into the equation: \[ \alpha + \beta = \frac{\pi}{2} + \frac{\pi}{2} = \pi \] ### Conclusion Thus, we have: \[ \alpha + \beta = \pi \] ### Final Answer The final answer is: \[ \alpha + \beta = \pi \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

(a) sin^(-1)(-1/2)=? (b) cos^(-1)(sqrt3/2)=?

1. sin^(-1) (1/sqrt2) 2. cos^(-1) (sqrt3/2)

1. sin^(-1) (1/sqrt2) 2. cos^(-1) (sqrt3/2)

If a=sin^(-1) (-sqrt2/2)+cos^(-1) (-1/2) and b=tan^(-1) (-sqrt3)-cot^(-1) (-1/sqrt3) , then

sin(cos^(-1)(-sqrt3/2))=?

" (4) "sin cos^(-1)(-(sqrt(3))/(2))

sin[cos^(-1)(-1/2)+tan^(-1)(sqrt(3))]

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  2. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  3. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  4. If a(1),a(2),a(3),….a(n) is a.p with common difference d then tan{tan...

    Text Solution

    |

  5. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  6. Which of the following angles is greater? theta1=sin^(-1)(4/5)+sin^(-...

    Text Solution

    |

  7. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  8. Solve tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1)"\ "8/(31)

    Text Solution

    |

  9. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  10. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |

  11. Show that: cos(2tan^(-1)1/7)=sin(4^(-1)1/3)

    Text Solution

    |

  12. Number of integral solutions of the equation 2 sin^-1sqrt(x^2-x +1 )+ ...

    Text Solution

    |

  13. cos{cos^(-1)(-1/7)+sin^(-1)(-1/7)} =

    Text Solution

    |

  14. If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal ...

    Text Solution

    |

  15. sin[1/2cos^(- 1)4/5]

    Text Solution

    |

  16. lf x >=0 and theta = sin^(-1)x + cos^(-1)x-tan^(-1) x, then

    Text Solution

    |

  17. If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

    Text Solution

    |

  18. The value of cot(c o s e c^(- 1)5/3+tan^(- 1)(2/3))i s

    Text Solution

    |

  19. Prove the following : sin^(-1)4/5+2\ tan^(-1)1/3=pi/2

    Text Solution

    |

  20. The equation sin^-1x-cos^-1x=cos^-1(sqrt3/2) has

    Text Solution

    |