Home
Class 12
MATHS
(dy)/(dx) = sqrt(4 - y^(2))(-2 lt y lt 2...

`(dy)/(dx) = sqrt(4 - y^(2))(-2 lt y lt 2)`

Text Solution

Verified by Experts

The correct Answer is:
`y = 2 sin (x + C)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.5|17 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.6|19 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.3|12 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise Miscellaneous Exercises on Chapter 4|18 Videos
  • INTEGRALS

    NCERT GUJARATI|Exercise EXERCISE 7.12|41 Videos

Similar Questions

Explore conceptually related problems

Find the general solution of the differential equation (dy)/(dx) + sqrt((1 - y^(2))/(1 - x^(2))) = 0 .

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy

(dy)/(dx) + (y)/(x) = x^(2)

If sqrt(1-x^(2)) + sqrt(1 -y^(2))= a(x-y) , then prove that (dy)/(dx)= sqrt((1-y^(2))/(1-x^(2))) . (Where |x| le 1, |y| le 1 )

(dy)/(dx) + 3y = e^(-2x)

If (a-b cos y) (a + b cos x)= a^(2) -b^(2) show that (dy)/(dx)= (sqrt(a^(2)-b^(2)))/(a+b cos x), 0 lt x lt (pi)/(2)

If y= {x + sqrt(x^(2) + a^(2))}^(n) prove that (dy)/(dx)= (ny)/(sqrt(x^(2) + a^(2))). n gt 1 ne N

Find (dy)/(dx) in the following: y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt2) lt x lt 1

x dy - y dx = sqrt(x^(2) + y^(2)) dx

y dx + (x - y^(2))dy = 0