Home
Class 12
MATHS
(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx...

`(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx = 0`

Text Solution

Verified by Experts

The correct Answer is:
`y = log (e^(x) + e^(-x)) + C`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.5|17 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.6|19 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.3|12 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise Miscellaneous Exercises on Chapter 4|18 Videos
  • INTEGRALS

    NCERT GUJARATI|Exercise EXERCISE 7.12|41 Videos

Similar Questions

Explore conceptually related problems

Integration by partial fraction : int(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx=Ax+B log(9e^(x)-4e^(-x))+c then A+B=.

Evaluate : int (e^(5x)+e^(3x))/(e^(x)+e^(-x)) dx

int e^(e^(e^(x))) * e^(e^(x))*e^(x)dx = + c

int ( e^(x - 1) + x^(e - 1))/( e^(x) + x^(e)) dx = . . . . + c

e^(x) tan y dx + (1 - e^(x))sec^(2)y dy = 0

f(x) = (e^(x)-e^(-x))/(e^(x)+e^(-x))+2 . The inverse of f(x) is ........

Find the particular solution of the differential equation (1 + e^(2x))dy + (1 + y^(2))e^(x)dx = 0 , given that y = 1 when x = 0

(d)/(dx) (e^(5x)) = …….

e^(x) + e^(y) = e^(x+ y) then prove that, (dy)/(dx) + (e^(x) (e^(y)-1))/(e^(y) (e^(x)-1))=0