Home
Class 12
MATHS
Prove that cot^(-1) (-x) = pi - cot^(-1)...

Prove that `cot^(-1) (-x) = pi - cot^(-1)x , forall " x " in `R.

Promotional Banner

Topper's Solved these Questions

  • II PUC APRIL 2020 CLASS - XII

    OSWAAL PUBLICATION|Exercise PART - C|14 Videos
  • II PUC APRIL 2020 CLASS - XII

    OSWAAL PUBLICATION|Exercise PART - D|10 Videos
  • II PUC APRIL 2020 CLASS - XII

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos
  • II PUC ANNUAL EXAMINATION 2019

    OSWAAL PUBLICATION|Exercise PART-D (Answer the questions)|12 Videos
  • II PUC JULY -2016

    OSWAAL PUBLICATION|Exercise PART-E (V. Answer any ten questions : )|3 Videos

Similar Questions

Explore conceptually related problems

Prove that cot^(-1)(-x)=pi-cot^(-1)x,AAx inR .

Prove that tan^(-1)x+cot^(-1)x=(pi)/(2), x in R .

Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) + 6 gt 0 is

Considering only the principal values, if tan ("cot"^(-1) x)=sin ("cot"^(-1) 1/2) , then x is :

cos [ tan^(-1){sin (cot^(-1)x)}] =

int_(-3)^(3) cot^(-1)x dx =

int_(-2)^(1) cot^(-1) (1/x) dx =

cos[tan^(-1) {sin(cot^(-1) x)}] =