Home
Class 12
MATHS
Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=...

Prove that `2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))`

Text Solution

Verified by Experts

The correct Answer is:
`tan^(-1) (31)/(17)`
Promotional Banner

Topper's Solved these Questions

  • II PUC APRIL 2020 CLASS - XII

    OSWAAL PUBLICATION|Exercise PART - D|10 Videos
  • II PUC APRIL 2020 CLASS - XII

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos
  • II PUC APRIL 2020 CLASS - XII

    OSWAAL PUBLICATION|Exercise PART - B|14 Videos
  • II PUC ANNUAL EXAMINATION 2019

    OSWAAL PUBLICATION|Exercise PART-D (Answer the questions)|12 Videos
  • II PUC JULY -2016

    OSWAAL PUBLICATION|Exercise PART-E (V. Answer any ten questions : )|3 Videos

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Prove that 2"tan"^(-1)1/2+"tan"^(-1)1/7="tan"^(-1)31/17

Prove that 2tan^(-1)((1)/(2))+ tan^(-1)((1)/(7))= tan^(-1)((31)/(17))

Show that 2tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9)

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4

Prove that 2sin^(-1)(3/5)=tan^(-1)((24)/1)

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4