Home
Class 12
MATHS
Using Properties of determinants, prove ...

Using Properties of determinants, prove that
`{:|(x+lamda,2x,2x),(2x,x+lamda,2x),(2x,2x,x+lamda)|=(5x+lamda)(lamda-x)^2`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC -1 DETERMINANTS, MINORS & COFACTORS (LONG ANSWER TYPE QUESTION -II)|3 Videos
  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC-2 SOLUTIONS OF SYSTEM OF LINEAR EQUATIONS (LONG ANSWER TYPE QUESTIONS -II )|24 Videos
  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC -1 DETERMINANTS, MINORS & COFACTORS (SHORT ANSWER TYPE QUESTIONS-II)|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OSWAAL PUBLICATION|Exercise MVT AND ROLLE.S THEOREM ( SHORT ANSWER TYPE QUESTIONS-II)|5 Videos
  • DIFFERENTIAL EQUATIONS

    OSWAAL PUBLICATION|Exercise HOMOGENEOUS DIFFERENTIAL EQUATIONS (Long Answer Type Questions - III)|8 Videos

Similar Questions

Explore conceptually related problems

Using Properties of determinants, prove that {:|(x+y,x,x),(5x+4y,4x,2x),(10x+8y,8x,3x)|=x^3

|(x+4, 2x, 2x),(2x, x +4, 2x),(2x, 2x ,x+4)| = (5x + 4)(4 - x)^(2) .

Show that |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x+4)(4-x)^(2)

By using properties of determinants , show that : {:|( 1,x,x^(2) ),( x^(2) ,1,x) ,( x,x^(2), 1) |:} =( 1-x^(3)) ^(2)

Prove that |(1,x,x^2),(x^2, 1,x),(x,x^2 ,1)| =(1-x^3)^2

Prove that |(1,x,x^2),(x^2,1,x),(x,x^2,1)|=(1-x^2) .

The value of determinant |(x,x+y,x+2y),(x+2y,x,x+y),(x+y,x+2y,x)| is

If a,b,c are A.P then the value of the determinant |(x+2,x+3,x+2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c)|

If a,b,c are in A.P. then the determinant {:|( x+2,x+3,x+2a),( x+3,x+4,x+2b),( x+4,x+5,x+2c)|:} is

OSWAAL PUBLICATION-DETERMINANTS-TOPIC -1 DETERMINANTS, MINORS & COFACTORS (LONG ANSWER TYPE QUESTIONS-I)
  1. |[b+c, a,a] , [b,c+a,b] , [c,c,a+b]|=4abc

    Text Solution

    |

  2. Using properties of determinants, prove that |a+x y z x a+y z x y a+z...

    Text Solution

    |

  3. Using Properties of determinants, prove that {:|(x+lamda,2x,2x),(2...

    Text Solution

    |

  4. Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Pr...

    Text Solution

    |

  5. Prove: |2y y-z-x2y2z2z z-x-y x-y-z2x2x|=(x+y+z)^3

    Text Solution

    |

  6. Using Properties of determinants, prove that: {:|(x^2+1,xy,yz),(xy,y...

    Text Solution

    |

  7. Prove that: |(a^2+1, ab, ac),(ab, b^2+1, bc),(ac, bc, c^2+1)|=1+a^2+b^...

    Text Solution

    |

  8. Using Properties of determinants, prove that {:|(x+y,x,x),(5x+4y,4x,...

    Text Solution

    |

  9. Using Properties of determinants, prove that: {:|(b+c,c+a,a+b),(q+r,...

    Text Solution

    |

  10. IF a+b+c ne 0 and {:|(a,b,c),(b,c,a),(c,a,b)|=0, then using properties...

    Text Solution

    |

  11. Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(a+b+c)

    Text Solution

    |

  12. Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b...

    Text Solution

    |

  13. Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c...

    Text Solution

    |

  14. Find the equation of the line joining A( 1,3) and B (0,0) using det...

    Text Solution

    |

  15. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |

  16. Using properties of determinants, prove the following: |alphabetag...

    Text Solution

    |

  17. 15. Using properties of determinants, prove the following |[a,b,c],[a-...

    Text Solution

    |

  18. [[b+c,a-b,a],[c+a,b-c,b],[a+b,c-a,c]] = 3abc - a^3 - b^3 - c^3

    Text Solution

    |

  19. Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(...

    Text Solution

    |

  20. Prove that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)...

    Text Solution

    |