Home
Class 12
MATHS
Using Properties of determinants, prove ...

Using Properties of determinants, prove that
`{:|(x+y,x,x),(5x+4y,4x,2x),(10x+8y,8x,3x)|=x^3`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC -1 DETERMINANTS, MINORS & COFACTORS (LONG ANSWER TYPE QUESTION -II)|3 Videos
  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC-2 SOLUTIONS OF SYSTEM OF LINEAR EQUATIONS (LONG ANSWER TYPE QUESTIONS -II )|24 Videos
  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC -1 DETERMINANTS, MINORS & COFACTORS (SHORT ANSWER TYPE QUESTIONS-II)|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OSWAAL PUBLICATION|Exercise MVT AND ROLLE.S THEOREM ( SHORT ANSWER TYPE QUESTIONS-II)|5 Videos
  • DIFFERENTIAL EQUATIONS

    OSWAAL PUBLICATION|Exercise HOMOGENEOUS DIFFERENTIAL EQUATIONS (Long Answer Type Questions - III)|8 Videos

Similar Questions

Explore conceptually related problems

Using Properties of determinants, prove that {:|(x+lamda,2x,2x),(2x,x+lamda,2x),(2x,2x,x+lamda)|=(5x+lamda)(lamda-x)^2

Prove that |(x,y,y),(y,x,y),(y,y,x)| = (x + 2y)(x - y)^(2)

The value of determinant |(x,x+y,x+2y),(x+2y,x,x+y),(x+y,x+2y,x)| is

Prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|= 2(x+y+z)^(3)

Prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|= 2(x+y+z)^(3)

If (x_1,y_1) , (x_2,y_2) and (x_3,y_3) are the vertices of a triangle whose area is k square units, then |{:(x_1,y_1,4),(x_2,y_2,4),(x_3,y_3,4):}|^2 is

Which of the given values of x and y make the following pair of matrices equal [(3x+7,5),(y+1,2-3x)],[(0,y-2),(8,4)]

If (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) are the vertices of a triangle whose area is 'k' square units, then |(x_(1),y_(1),4),(x_(2),y_(2),4),(x_(3),y_(3),4)|^(2) is

The length of the minor axis of 3 x^(2)+4 y^(2)+6 x-8 y-5=0

OSWAAL PUBLICATION-DETERMINANTS-TOPIC -1 DETERMINANTS, MINORS & COFACTORS (LONG ANSWER TYPE QUESTIONS-I)
  1. Using Properties of determinants, prove that: {:|(x^2+1,xy,yz),(xy,y...

    Text Solution

    |

  2. Prove that: |(a^2+1, ab, ac),(ab, b^2+1, bc),(ac, bc, c^2+1)|=1+a^2+b^...

    Text Solution

    |

  3. Using Properties of determinants, prove that {:|(x+y,x,x),(5x+4y,4x,...

    Text Solution

    |

  4. Using Properties of determinants, prove that: {:|(b+c,c+a,a+b),(q+r,...

    Text Solution

    |

  5. IF a+b+c ne 0 and {:|(a,b,c),(b,c,a),(c,a,b)|=0, then using properties...

    Text Solution

    |

  6. Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(a+b+c)

    Text Solution

    |

  7. Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b...

    Text Solution

    |

  8. Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c...

    Text Solution

    |

  9. Find the equation of the line joining A( 1,3) and B (0,0) using det...

    Text Solution

    |

  10. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |

  11. Using properties of determinants, prove the following: |alphabetag...

    Text Solution

    |

  12. 15. Using properties of determinants, prove the following |[a,b,c],[a-...

    Text Solution

    |

  13. [[b+c,a-b,a],[c+a,b-c,b],[a+b,c-a,c]] = 3abc - a^3 - b^3 - c^3

    Text Solution

    |

  14. Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(...

    Text Solution

    |

  15. Prove that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)...

    Text Solution

    |

  16. Using properties of determinants, prove that |b+c q+r y+z c+a r+p ...

    Text Solution

    |

  17. Using the Properties of determinants, prove that following: {:|(-a^2...

    Text Solution

    |

  18. Using the Properties of determinants, prove the following: {:|(1,1...

    Text Solution

    |

  19. If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 and x, y, z are ...

    Text Solution

    |

  20. Using properties of determinants, solve the following for x: |x-2 ...

    Text Solution

    |