Home
Class 12
MATHS
Prove that: (i) |{:(,1,1,1),(,a,b,c),(...

Prove that:
(i) `|{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b-c)(c-a)(a+b+c)`
(ii) `|{:(,a,b+c,a^(2)),(,b,c+a,b^(2)),(,c,a+b,c^(2)):}|=-(a+b+c)(a-b)(b-c)(c-a)`
(iii) `|{:(,b+c,a,a),(,b,c+a,b),(,c,c,a+b):}|=4abc`
(iv) If `|{:(,1,a^(2),a^(4)),(,1,b^(2),b^(4)),(,1,c^(2),c^(4)):}|=(a+b)(b+c)(c+a)=|{:(,1,1,1),(,a,b,c),(,a^(2),b^(2),c^(2)):}|`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC -1 DETERMINANTS, MINORS & COFACTORS (LONG ANSWER TYPE QUESTION -II)|3 Videos
  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC-2 SOLUTIONS OF SYSTEM OF LINEAR EQUATIONS (LONG ANSWER TYPE QUESTIONS -II )|24 Videos
  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC -1 DETERMINANTS, MINORS & COFACTORS (SHORT ANSWER TYPE QUESTIONS-II)|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OSWAAL PUBLICATION|Exercise MVT AND ROLLE.S THEOREM ( SHORT ANSWER TYPE QUESTIONS-II)|5 Videos
  • DIFFERENTIAL EQUATIONS

    OSWAAL PUBLICATION|Exercise HOMOGENEOUS DIFFERENTIAL EQUATIONS (Long Answer Type Questions - III)|8 Videos

Similar Questions

Explore conceptually related problems

Prove that |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |(1,1,1),(a,b,c),(a^3,b^3,c^3)| = (a - b)(b-c)(c-a)(a+b+c) .

Prove that |{:(,1,a,a^(2)),(,1,b,b^(2)),(,1,c,c^(2)):}|=(a-b)(b-c)(c-a)

Prove that |(b+c,a,a),(b,c+a,b),(c,c,a+b)|= 4ac

|(a,b,c),(b,c,a),(c,a,b)| =

|(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))|= 0

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

Prove that |(1,1,1),(bc,ca,ab),(b+c, c+a, a+b)| = (a-b)(b-c)(c-a)

Prove that {:[(1,ab,a+b),(1,bc,b+c),(1,ca,c+a):}]=(a-b)(b-c)(c-a)

Prove that {:|( b+c,a,a), ( b,c+a,b),( c,c,b+a) |:} = 4abc

OSWAAL PUBLICATION-DETERMINANTS-TOPIC -1 DETERMINANTS, MINORS & COFACTORS (LONG ANSWER TYPE QUESTIONS-I)
  1. IF a+b+c ne 0 and {:|(a,b,c),(b,c,a),(c,a,b)|=0, then using properties...

    Text Solution

    |

  2. Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(a+b+c)

    Text Solution

    |

  3. Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b...

    Text Solution

    |

  4. Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c...

    Text Solution

    |

  5. Find the equation of the line joining A( 1,3) and B (0,0) using det...

    Text Solution

    |

  6. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |

  7. Using properties of determinants, prove the following: |alphabetag...

    Text Solution

    |

  8. 15. Using properties of determinants, prove the following |[a,b,c],[a-...

    Text Solution

    |

  9. [[b+c,a-b,a],[c+a,b-c,b],[a+b,c-a,c]] = 3abc - a^3 - b^3 - c^3

    Text Solution

    |

  10. Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(...

    Text Solution

    |

  11. Prove that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)...

    Text Solution

    |

  12. Using properties of determinants, prove that |b+c q+r y+z c+a r+p ...

    Text Solution

    |

  13. Using the Properties of determinants, prove that following: {:|(-a^2...

    Text Solution

    |

  14. Using the Properties of determinants, prove the following: {:|(1,1...

    Text Solution

    |

  15. If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 and x, y, z are ...

    Text Solution

    |

  16. Using properties of determinants, solve the following for x: |x-2 ...

    Text Solution

    |

  17. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  18. Using Properties of determinants, solve the following for x: {:|(x+a...

    Text Solution

    |

  19. Prove, using properties of determinants: |y+k y y y y+k y y y y+k|=k^...

    Text Solution

    |

  20. Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab...

    Text Solution

    |