Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove the following: `|xx+y x+2y\ x+2y xx+y x+y x+2y x|=9y^2(x+y)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC -1 DETERMINANTS, MINORS & COFACTORS (LONG ANSWER TYPE QUESTION -II)|3 Videos
  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC-2 SOLUTIONS OF SYSTEM OF LINEAR EQUATIONS (LONG ANSWER TYPE QUESTIONS -II )|24 Videos
  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC -1 DETERMINANTS, MINORS & COFACTORS (SHORT ANSWER TYPE QUESTIONS-II)|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OSWAAL PUBLICATION|Exercise MVT AND ROLLE.S THEOREM ( SHORT ANSWER TYPE QUESTIONS-II)|5 Videos
  • DIFFERENTIAL EQUATIONS

    OSWAAL PUBLICATION|Exercise HOMOGENEOUS DIFFERENTIAL EQUATIONS (Long Answer Type Questions - III)|8 Videos

Similar Questions

Explore conceptually related problems

Using Properties of determinants, prove that {:|(x+y,x,x),(5x+4y,4x,2x),(10x+8y,8x,3x)|=x^3

using properties of determinant prove that {:[( x,x^(2) , 1+ px^(3) ),( y,y^(2) , 1+ py^(2)),( z,z^(2) , 1+pz^(2)) ]:} =( 1+pxyz ) ( x-y) ( y-z ) (z-x) , where p is any scalar .

Using Properties of determinants, prove that: {:|(x^2+1,xy,yz),(xy,y^2+1,yz),(xz,yz,z^2+1)|=1+x^2+y^2+z^2

Solve for x and y 2x + y = 6 and 2x - y = 2

Orthocentre of the triangle formed by the lines x+y+1=0 and 2 x^(2)-x y-y^(2)+x+2 y-1=0 is

Co-ordinates of radical centre of the circles : x^2+y^2 = 9 , x^2+y^2 -2x -2y =5 and x^2+y^2 +4x + 6y =19 are :

Verify the following : (i) x^3+y^3=(x-y)(x^2-xy+y^2) (ii) x^3-y^3=(x-y) (x^2+xy+y^2)

Determine algebraically the vertices of the triangle formed by the lines 3x-y=3, 2x-3y=2," and "x+2y=8 .

The value of determinant |(x,x+y,x+2y),(x+2y,x,x+y),(x+y,x+2y,x)| is

OSWAAL PUBLICATION-DETERMINANTS-TOPIC -1 DETERMINANTS, MINORS & COFACTORS (LONG ANSWER TYPE QUESTIONS-I)
  1. Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c...

    Text Solution

    |

  2. Find the equation of the line joining A( 1,3) and B (0,0) using det...

    Text Solution

    |

  3. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |

  4. Using properties of determinants, prove the following: |alphabetag...

    Text Solution

    |

  5. 15. Using properties of determinants, prove the following |[a,b,c],[a-...

    Text Solution

    |

  6. [[b+c,a-b,a],[c+a,b-c,b],[a+b,c-a,c]] = 3abc - a^3 - b^3 - c^3

    Text Solution

    |

  7. Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(...

    Text Solution

    |

  8. Prove that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)...

    Text Solution

    |

  9. Using properties of determinants, prove that |b+c q+r y+z c+a r+p ...

    Text Solution

    |

  10. Using the Properties of determinants, prove that following: {:|(-a^2...

    Text Solution

    |

  11. Using the Properties of determinants, prove the following: {:|(1,1...

    Text Solution

    |

  12. If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 and x, y, z are ...

    Text Solution

    |

  13. Using properties of determinants, solve the following for x: |x-2 ...

    Text Solution

    |

  14. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  15. Using Properties of determinants, solve the following for x: {:|(x+a...

    Text Solution

    |

  16. Prove, using properties of determinants: |y+k y y y y+k y y y y+k|=k^...

    Text Solution

    |

  17. Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab...

    Text Solution

    |

  18. Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^2

    Text Solution

    |

  19. |(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2(3abc-a^(3)-b^(3)-c^(3))

    Text Solution

    |

  20. Prove, using Properites of determinants, {:|(a+bx^2,c+dx^2,p+qx^2),(...

    Text Solution

    |