Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove the following: `|alphabetagammaalpha^2beta^2gamma^2beta+gammagamma+alphaalpha+beta|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC -1 DETERMINANTS, MINORS & COFACTORS (LONG ANSWER TYPE QUESTION -II)|3 Videos
  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC-2 SOLUTIONS OF SYSTEM OF LINEAR EQUATIONS (LONG ANSWER TYPE QUESTIONS -II )|24 Videos
  • DETERMINANTS

    OSWAAL PUBLICATION|Exercise TOPIC -1 DETERMINANTS, MINORS & COFACTORS (SHORT ANSWER TYPE QUESTIONS-II)|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OSWAAL PUBLICATION|Exercise MVT AND ROLLE.S THEOREM ( SHORT ANSWER TYPE QUESTIONS-II)|5 Videos
  • DIFFERENTIAL EQUATIONS

    OSWAAL PUBLICATION|Exercise HOMOGENEOUS DIFFERENTIAL EQUATIONS (Long Answer Type Questions - III)|8 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants prove that : {:|( alpha , alpha ^(2) , beta +gamma ),( beta , beta ^(2) , gamma +alpha ),( gamma , gamma ^(2) ,alpha +beta ) |:} =(beta -gamma ) (gamma -alpha ) (alpha -beta ) (alpha +beta +gamma )

If alpha+beta+gamma=2 pi, then

if alpha,beta,gamma are the roots of x^3-3x^2 +3x + 7 =0 then (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1)

If alpha, beta, gamma are the roots of the cubic x^(3)-px^(2)+qx-r=0 Find the equations whose roots are (i) beta gamma +1/(alpha), gamma alpha+1/(beta), alpha beta+1/(gamma) (ii) (beta+gamma-alpha),(gamma+alpha-beta),(alpha+beta-gamma) Also find the valueof (beta+gamma-alpha)(gamma+alpha-beta)(alpha+beta-gamma)

If cos ^(-1) alpha+cos ^(-1) beta+cos ^(-1) gamma=3 pi then alpha(beta+gamma)+beta(gamma+alpha)+gamma(alpha+beta)=

cos alpha sin (beta-gamma)+cos beta sin (gamma-alpha) +cos gamma(sin alpha-beta)=

Reflection of the point (alpha, beta, gamma) in XY plane is

Reflexion of the point (alpha, beta, gamma) in XY plane is

Distance of the point (alpha, beta, gamma) from the y-axis is

If A=[(alpha, beta),(gamma, -alpha)] is such that A^(2)=I , then

OSWAAL PUBLICATION-DETERMINANTS-TOPIC -1 DETERMINANTS, MINORS & COFACTORS (LONG ANSWER TYPE QUESTIONS-I)
  1. Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c...

    Text Solution

    |

  2. Find the equation of the line joining A( 1,3) and B (0,0) using det...

    Text Solution

    |

  3. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |

  4. Using properties of determinants, prove the following: |alphabetag...

    Text Solution

    |

  5. 15. Using properties of determinants, prove the following |[a,b,c],[a-...

    Text Solution

    |

  6. [[b+c,a-b,a],[c+a,b-c,b],[a+b,c-a,c]] = 3abc - a^3 - b^3 - c^3

    Text Solution

    |

  7. Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(...

    Text Solution

    |

  8. Prove that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)...

    Text Solution

    |

  9. Using properties of determinants, prove that |b+c q+r y+z c+a r+p ...

    Text Solution

    |

  10. Using the Properties of determinants, prove that following: {:|(-a^2...

    Text Solution

    |

  11. Using the Properties of determinants, prove the following: {:|(1,1...

    Text Solution

    |

  12. If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 and x, y, z are ...

    Text Solution

    |

  13. Using properties of determinants, solve the following for x: |x-2 ...

    Text Solution

    |

  14. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  15. Using Properties of determinants, solve the following for x: {:|(x+a...

    Text Solution

    |

  16. Prove, using properties of determinants: |y+k y y y y+k y y y y+k|=k^...

    Text Solution

    |

  17. Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab...

    Text Solution

    |

  18. Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^2

    Text Solution

    |

  19. |(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2(3abc-a^(3)-b^(3)-c^(3))

    Text Solution

    |

  20. Prove, using Properites of determinants, {:|(a+bx^2,c+dx^2,p+qx^2),(...

    Text Solution

    |