Home
Class 12
MATHS
lim(xrarroo)((1^(4)+2^(4)+3^(4)+….+x^(4)...

`lim_(xrarroo)((1^(4)+2^(4)+3^(4)+….+x^(4)))/(x^(2)(1^(2)+2^(2)+……+x^(2)))` equals

A

`(1)/(5)`

B

`(2)/(5)`

C

`(3)/(5)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{1^4 + 2^4 + 3^4 + \ldots + x^4}{x^2 (1^2 + 2^2 + \ldots + x^2)}, \] we will first use the formulas for the sums of powers of natural numbers. ### Step 1: Identify the sums The sum of the first \( n \) natural numbers raised to the fourth power is given by: \[ \sum_{k=1}^n k^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}. \] The sum of the first \( n \) natural numbers raised to the second power is given by: \[ \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}. \] ### Step 2: Substitute the sums into the limit Substituting these formulas into our limit gives us: \[ \lim_{x \to \infty} \frac{\frac{x(x+1)(2x+1)(3x^2 + 3x - 1)}{30}}{x^2 \cdot \frac{x(x+1)(2x+1)}{6}}. \] ### Step 3: Simplify the expression Now, we simplify the expression: \[ = \lim_{x \to \infty} \frac{\frac{x(x+1)(2x+1)(3x^2 + 3x - 1)}{30}}{\frac{x^3(x+1)(2x+1)}{6}}. \] This simplifies to: \[ = \lim_{x \to \infty} \frac{6(3x^2 + 3x - 1)}{30x} = \lim_{x \to \infty} \frac{3(3x^2 + 3x - 1)}{5x}. \] ### Step 4: Further simplification Now, we can divide the numerator and denominator by \( x \): \[ = \lim_{x \to \infty} \frac{3(3x + 3 - \frac{1}{x})}{5}. \] ### Step 5: Apply the limit As \( x \to \infty \), \( \frac{1}{x} \to 0 \): \[ = \frac{3(3 \cdot \infty + 3 - 0)}{5} = \frac{3 \cdot 3}{5} = \frac{9}{5}. \] ### Final Answer Thus, the limit evaluates to: \[ \frac{9}{5}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo) (2x)/(1+4x)

lim_(xrarroo) (1^(2)+2^(2)+3^(2)+....+x^(2))/(4x+3)

Lim_(xrarroo)((x+1)/(x+2))^(x+3)

lim_(x rarr oo)(2-(1)/(x)+(4)/(x^(2)))

lim_(x rarr2)(x^(3)-4x^(2)+4x)/(x^(2)-4)

lim_(x rarr2)(x^(3)-4x^(2)+4x)/(x^(2)-4)

lim_(x rarr2)(x^(3)-4x^(2)+4x)/(x^(2)-4)

lim_(x rarr2)(x^(2)-4)/(x^(3)-4x^(2)+4x)

lim_(x rarr2)(x^(3)-3x^(2)+4)/(x^(4)-8x^(2)+16)

lim_ (x rarr oo) ((2x ^ (2) -1) / (2x ^ (2) +3)) ^ (4x ^ (2) +2)