Home
Class 12
MATHS
lim(x->0) (sin^-1x - tan^-1x)/x^3 equal...

`lim_(x->0) (sin^-1x - tan^-1x)/x^3` equals

A

1

B

`-1`

C

2

D

`(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(xto0)(sin^(-1)x-tan^(-1)x)/(3x^3) is equal to L, then the value of (6L+1) is :

lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

lim_(xrarr0) (sin^-1x-tan^-1x)/(3x^3)=L then find (6L+1)

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(3)) equals

Evaluate lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)).

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

If lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(3x^(3)) is equal to L ,then the value of (6L+1) is:

Evaluate: lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(3))

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(2))