Home
Class 12
MATHS
lim(x->a)(x)/(x-a)int(a)^(x)f(x)dx equal...

`lim_(x->a)(x)/(x-a)int_(a)^(x)f(x)dx` equals

A

`2f(a)`

B

f(a)

C

af(a)

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to a} \frac{x}{x-a} \int_{a}^{x} f(t) \, dt \), we will follow these steps: ### Step 1: Identify the form of the limit As \( x \to a \), the integral \( \int_{a}^{x} f(t) \, dt \) approaches \( 0 \) because the limits of integration are the same. Thus, we have: \[ \lim_{x \to a} \frac{x}{x-a} \int_{a}^{x} f(t) \, dt = \frac{a}{0} \cdot 0 = \frac{0}{0} \] This is an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule. This involves differentiating the numerator and denominator with respect to \( x \). ### Step 3: Differentiate the numerator and denominator The numerator is \( \int_{a}^{x} f(t) \, dt \) and the denominator is \( x - a \). Using the Fundamental Theorem of Calculus, the derivative of the numerator is: \[ \frac{d}{dx} \left( \int_{a}^{x} f(t) \, dt \right) = f(x) \] The derivative of the denominator is: \[ \frac{d}{dx} (x - a) = 1 \] ### Step 4: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to a} \frac{f(x)}{1} = f(a) \] ### Step 5: Substitute back into the limit Thus, we have: \[ \lim_{x \to a} \frac{x}{x-a} \int_{a}^{x} f(t) \, dt = f(a) \] ### Final Result The final result is: \[ \lim_{x \to a} \frac{x}{x-a} \int_{a}^{x} f(t) \, dt = a \cdot f(a) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

int{f(x)g'(x)-f'g(x)}dx equals

If f(x)=x^(3)+3x+4, then the value of int_(-1)^(1)f(x)dx+int_(0)^(4)f^(-1)(x)dx equals

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

If int_(0)^(x)f(z)dz=x+int_(x)^(1)zf(z)dz , then int_(1)^(2)f(x)dx equals

If f(a+x)=f(x), then int_(0)^(na)f(x)dx is equal to n in N

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to