Home
Class 12
MATHS
The value of lim(xrarr0)(sin^(2)x+cosx-1...

The value of `lim_(xrarr0)(sin^(2)x+cosx-1)/(x^(2))` is

A

0

B

`(1)/(2)`

C

`-(1)/(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin^2 x + \cos x - 1}{x^2} \), we can break it down step by step. ### Step 1: Rewrite the limit We start with the limit: \[ L = \lim_{x \to 0} \frac{\sin^2 x + \cos x - 1}{x^2} \] We can separate the limit into two parts: \[ L = \lim_{x \to 0} \frac{\sin^2 x}{x^2} + \lim_{x \to 0} \frac{\cos x - 1}{x^2} \] ### Step 2: Evaluate the first limit The first limit is: \[ \lim_{x \to 0} \frac{\sin^2 x}{x^2} \] Using the standard limit \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \), we have: \[ \lim_{x \to 0} \frac{\sin^2 x}{x^2} = \left(\lim_{x \to 0} \frac{\sin x}{x}\right)^2 = 1^2 = 1 \] ### Step 3: Evaluate the second limit Now we evaluate the second limit: \[ \lim_{x \to 0} \frac{\cos x - 1}{x^2} \] Using the Taylor series expansion for \( \cos x \) around \( x = 0 \): \[ \cos x \approx 1 - \frac{x^2}{2} + O(x^4) \] Thus, \[ \cos x - 1 \approx -\frac{x^2}{2} \] So, \[ \lim_{x \to 0} \frac{\cos x - 1}{x^2} = \lim_{x \to 0} \frac{-\frac{x^2}{2}}{x^2} = -\frac{1}{2} \] ### Step 4: Combine the results Now we combine the results from Step 2 and Step 3: \[ L = 1 - \frac{1}{2} = \frac{1}{2} \] ### Final Answer Thus, the value of the limit is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

The value of lim_(xrarr0)(sin^(2)3x)/(sqrt(3+secx-2)) is equal to

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

lim_(xrarr0) (sin 3x)/x

The value of lim_(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log_(e)(1-2x^(2)))/(sin^(2)x)) is

lim_(xrarr0)(sin (pisin^(2)x))/(x^(2))=

The value of lim_(xrarr0)(cosx)^(cotx) , is

The value of lim_(xrarr0) (1+sinx-cosx+log(1-x))/(x^3) , is

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to