Home
Class 12
MATHS
Let f(x)={{:((sin(a+1)x+sinx)/(x)",",xlt...

Let `f(x)={{:((sin(a+1)x+sinx)/(x)",",xlt0),(c",",x=0),((sqrt(x+bx^(2)))/(bx^((3)/(2)))",",xgt0):}`
If f(x) is continous at x = 0, then

A

`a+c=0,b=1`

B

`a+c=1, b in R`

C

`a+c=-1, b in R`

D

`a+c=-1, b=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \), \( b \), and \( c \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to ensure that the left-hand limit and right-hand limit at \( x = 0 \) are equal to \( f(0) \). The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} \frac{\sin((a+1)x) + \sin x}{x} & \text{if } x < 0 \\ c & \text{if } x = 0 \\ \frac{\sqrt{x + bx^2}}{bx^{3/2}} & \text{if } x > 0 \end{cases} \] ### Step 1: Calculate the Left-Hand Limit as \( x \to 0^- \) For \( x < 0 \): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sin((a+1)x) + \sin x}{x} \] Using the limit property \( \lim_{x \to 0} \frac{\sin(kx)}{x} = k \) for any constant \( k \): \[ = \lim_{x \to 0^-} \left( (a+1) + \frac{\sin x}{x} \right) = (a+1) + 1 = a + 2 \] ### Step 2: Calculate the Right-Hand Limit as \( x \to 0^+ \) For \( x > 0 \): \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{x + bx^2}}{bx^{3/2}} \] Factoring out \( x \) from the square root: \[ = \lim_{x \to 0^+} \frac{\sqrt{x(1 + b x)}}{bx^{3/2}} = \lim_{x \to 0^+} \frac{\sqrt{x} \sqrt{1 + b x}}{b x^{3/2}} = \lim_{x \to 0^+} \frac{\sqrt{1 + b x}}{b x} = \frac{1}{b} \lim_{x \to 0^+} \frac{\sqrt{1 + b x}}{\sqrt{x}} \] As \( x \to 0 \): \[ = \frac{1}{b} \cdot \frac{1}{\sqrt{0}} = \text{undefined} \] Instead, we can rewrite: \[ = \lim_{x \to 0^+} \frac{\sqrt{1 + b x} - 1}{b x} \cdot \frac{\sqrt{1 + b x} + 1}{\sqrt{1 + b x} + 1} = \lim_{x \to 0^+} \frac{b x}{b x (\sqrt{1 + b x} + 1)} = \lim_{x \to 0^+} \frac{1}{\sqrt{1 + b x} + 1} = \frac{1}{2} \] ### Step 3: Set the Limits Equal to Each Other For continuity at \( x = 0 \): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \] \[ a + 2 = c = \frac{1}{2} \] ### Step 4: Solve for \( a \) and \( c \) From \( c = \frac{1}{2} \): \[ a + 2 = \frac{1}{2} \implies a = \frac{1}{2} - 2 = -\frac{3}{2} \] ### Step 5: Conclusion Thus, we have: \[ a = -\frac{3}{2}, \quad b \text{ can be any non-zero value}, \quad c = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

f(x)={((Sin(a+1)x+Sin2x)/(2x),,x lt 0),(b,,x=0),((sqrt(x-bx^3)-sqrtx)/(bx^(5/2) ), , xgt0):} , f(x) is a continous at x=0 then abs(a+b) is equal to

The values of a,b and c which make the function f(x)={{:(("sin"(a+1)x+"sinx")/(x),xlt0),(C,x=0),(sqrt(x+bx^(2)-sqrt("x"))/(b"x"^(3//2)),"x"gt0):} continuous at x=0 are

if f(x)={{:((sin(p+1)x+sinx)/(x),xlt0),(x,x=0),((sqrt(x^(2)+x)-sqrt(x))/(x^(3//2)),xgt0):} is continuous at x=0 then (p,q) is

Let f: R to R be a function defined as f(x)={(,(sin (a+1)x+sin 2x)/(2x), if x lt 0),(, b, if x=0), (,(sqrt(x+bx^(3))-sqrtx)/(bx^(5/2)), if x gt 0):} If f is continuous at x=0 then the value of a+b is equal to :

If f(x)={{:((sin(a+1)x+2sinx)/x", "xlt0),(2" ,"x=0),((sqrt(1+bx)-1)/x" ,"xgt0):} is continuous at x = 0, then find the values of 'a' and 'b'.

Show that the function f(x) defined by : f(x)={{:((sinx)/x+cosx", "xgt0),(2", "x=0),((4(1-sqrt(1-x)))/x", "xlt0):} is continuous at x = 0.

Determine the values of a,b,c for which the function f(x)={(sin(a+1)x+sin x)/(x),quad f or x<0c,quad f or x=0(sqrt(x+bx^(2)))/(bx^(3/2)),quad f or x is continuous at x=0