Home
Class 12
MATHS
Let for all x gt 0, f(x)=lim(nrarroo)n^(...

Let for all `x gt 0, f(x)=lim_(nrarroo)n^((x^((1)/(n))-1))`, then

A

`f(x)+f((1)/(x))=1`

B

`f(xy)=f(x)+f(y)`

C

`f(xy)=xf(y)+yf(x)`

D

`f(xy)=xf(x)+yf(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ f(x) = \lim_{n \to \infty} n \left( x^{\frac{1}{n}} - 1 \right) \] ### Step 1: Rewrite the limit We can rewrite \( n \) as \( \frac{1}{t} \) where \( t = \frac{1}{n} \). As \( n \to \infty \), \( t \to 0 \). Thus, we can rewrite the limit as: \[ f(x) = \lim_{t \to 0} \frac{x^{t} - 1}{t} \] ### Step 2: Recognize the form of the limit The expression \( \frac{x^{t} - 1}{t} \) as \( t \to 0 \) is in the form of the derivative of \( x^t \) at \( t = 0 \). We can apply L'Hôpital's Rule since it is an indeterminate form \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule Differentiating the numerator and denominator with respect to \( t \): - The derivative of the numerator \( x^{t} - 1 \) is \( x^{t} \ln(x) \). - The derivative of the denominator \( t \) is \( 1 \). Thus, we have: \[ f(x) = \lim_{t \to 0} \frac{x^{t} \ln(x)}{1} = \lim_{t \to 0} x^{t} \ln(x) \] ### Step 4: Evaluate the limit As \( t \to 0 \), \( x^{t} \) approaches \( 1 \): \[ f(x) = 1 \cdot \ln(x) = \ln(x) \] ### Conclusion Therefore, we find that: \[ f(x) = \ln(x) \] ### Step 5: Verify the property Now, we need to check if this function satisfies the property \( f(xy) = f(x) + f(y) \): \[ f(xy) = \ln(xy) = \ln(x) + \ln(y) = f(x) + f(y) \] This confirms that the function satisfies the logarithmic property. ### Final Answer The function \( f(x) \) is such that: \[ f(xy) = f(x) + f(y) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let f(x)=lim_(n rarr oo)(log(2+x)-x^(2n)sin x)/(1+x^(2n)) then

If f(x)=lim_(n rarr oo)n(x^((1)/(n))-1) then for x>0,y>0,f(xy) is equal to

Let f be a positive differentiable function defined on (0,oo) and phi(x)=lim_(nrarroo) (f(x+(1)/(n))/f(x))^(n) . Then intlog_(e)(phi(x))dx=

If agt0, b gt0 than lim_(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

Lim_(nrarroo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!)

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then

Let f(x)=lim_(n rarr oo)(cos x)/((1+tan^(-1)x)^(n)), then int_(0)^(oo)f(x)dx=