Home
Class 12
MATHS
int(dt)/(t+sqrt(a^2-t^2))...

`int(dt)/(t+sqrt(a^2-t^2))`

A

`(1)/(2)sin((t)/(a))+log(t+sqrt(a^(2)-t^(2)))+c`

B

`(1)/(2)sin^(-1)((t)/(a))+log sqrt(t+sqrt(a^(2)-t^(2)))+c`

C

`(1)/(2)sin^(-1)((t)/(a))+log sqrt(a+sqrt(a^(2)-t^(2)))+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int(dt)/(sqrt(3t-2t^(2)))

int(dt)/(sqrt(3t-2t^(2)))

" (a) "int(dt)/(sqrt(1-t^(2)))

(1)/(2)int(dt)/(t sqrt(t-1))

In the equation int(dt)/(sqrt(2at-t^(2)))=a^(x) sin^(-1)[t/a-1] . The value of x is

int (dt)/(sqrt(2at - t^(2))) = a^(2) sin ^(-1)[[1)/(a) - 1] The value of x is

Evaluate int(t^(2))/(sqrt(1-t^(2)))dt

int(1)/(tsqrt(t^(2) -1))dt

The solution for x of the equation int_(sqrt(2))^(x)(dt)/(t sqrt(t^(2)-1))=(pi)/(2) is: (A) 2(B)pi(C)(sqrt(3))/(2) (D) 2sqrt(2)

int(dt)/((1+sqrt(t))^(8))=(-1)/(3(1+sqrt(t))^(p_(1)))+(2)/((7(1+sqrt(t))^(p_(2))))+c

MTG-WBJEE-INDEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. int(dt)/(t+sqrt(a^2-t^2))

    Text Solution

    |

  2. The value of int((x-2)dx)/{(x-2)^(2)(x+3)^(7)}^(1//3) is

    Text Solution

    |