Home
Class 12
MATHS
If int(x^(6)+x^(4)+x^(2))(2x^(4)+3x^(2)+...

If `int(x^(6)+x^(4)+x^(2))(2x^(4)+3x^(2)+6)^(1//2)dx=k(Ax^(6)+Bx^(4)+Cx^(2))^(p)+C_(1)` then

A

`k=(1)/(18), A=B=C=p`

B

`k=(1)/(18), A=2,B= 3, C=6, p=(3)/(2)`

C

`k=3, p=(1)/(3), A=B=C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (x^6 + x^4 + x^2)(2x^4 + 3x^2 + 6)^{1/2} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int (x^6 + x^4 + x^2)(2x^4 + 3x^2 + 6)^{1/2} \, dx \] ### Step 2: Factor out \( x^2 \) Notice that we can factor \( x^2 \) from the polynomial: \[ x^6 + x^4 + x^2 = x^2(x^4 + x^2 + 1) \] Thus, we can rewrite the integral as: \[ I = \int x^2 (x^4 + x^2 + 1)(2x^4 + 3x^2 + 6)^{1/2} \, dx \] ### Step 3: Substitution Let us make the substitution: \[ t = 2x^6 + 3x^4 + 6x^2 \] Now, we need to differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 12x^5 + 12x^3 + 12x = 12x(x^4 + x^2 + 1) \] Thus, we have: \[ dt = 12x(x^4 + x^2 + 1) \, dx \quad \Rightarrow \quad dx = \frac{dt}{12x(x^4 + x^2 + 1)} \] ### Step 4: Substitute in the Integral Now substituting \( t \) and \( dx \) into the integral: \[ I = \int x^2 (x^4 + x^2 + 1)(2x^4 + 3x^2 + 6)^{1/2} \cdot \frac{dt}{12x(x^4 + x^2 + 1)} \] The \( (x^4 + x^2 + 1) \) terms cancel out: \[ I = \int \frac{x^2}{12x} (2x^4 + 3x^2 + 6)^{1/2} \, dt = \frac{1}{12} \int (2x^4 + 3x^2 + 6)^{1/2} \, dt \] ### Step 5: Change of Variables Now, we can express \( (2x^4 + 3x^2 + 6)^{1/2} \) in terms of \( t \): \[ I = \frac{1}{12} \int t^{1/2} \, dt \] ### Step 6: Evaluate the Integral The integral of \( t^{1/2} \) is: \[ \int t^{1/2} \, dt = \frac{t^{3/2}}{3/2} = \frac{2}{3} t^{3/2} \] Thus, we have: \[ I = \frac{1}{12} \cdot \frac{2}{3} t^{3/2} + C_1 = \frac{1}{18} t^{3/2} + C_1 \] ### Step 7: Substitute Back for \( t \) Substituting back for \( t \): \[ t = 2x^6 + 3x^4 + 6x^2 \] So, we get: \[ I = \frac{1}{18} (2x^6 + 3x^4 + 6x^2)^{3/2} + C_1 \] ### Step 8: Identify Constants From the expression, we can identify: - \( k = \frac{1}{18} \) - \( A = 2 \) - \( B = 3 \) - \( C = 6 \) - \( p = \frac{3}{2} \) ### Final Answer Thus, we have: \[ I = k(Ax^6 + Bx^4 + Cx^2)^p + C_1 \] where \( k = \frac{1}{18}, A = 2, B = 3, C = 6, p = \frac{3}{2} \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

If int(x^(2)+2x^(4)+3x^(6))(1+x^(2)+x^(4))^(1/2)dx=k(Ax^(2)+Bx^(4)+Cx^(6 ))^(p)+I then the value of A, B, k and P is.

If "int(x^(2)+2x^(4)+3x^(6))(1+x^(2)+x^(4))^(1/2)dx=k(Ax^(2)+Bx^(4)+cx^(6))^(p)+l then

Evaluate int(x^(6)+x^(4)+x^(2))sqrt(2x^(4)+3x^(2)+6)dx .

int(2x^(4)+7x^(3)+6x^(2))/(x^(2)+2x)dx

int(x^(4)+1-x^(2))/(x^(6)+1)dx=

int(ax^(3)+bx^(2)+c)/(x^(4))dx=

If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) +betax ^(4) + gammax ^(2))^(3//2))/(18) +C where C is constnat, then find the value of (beta + gamma - alpha).

int(ax^(3)+cx)/(x^(4)+c^(2))dx

int(x^(9))/((4x^(2)+1)^(6))dx=

int_(0)^(1)(x^(6)-4x^(5)+5x^(4)-4x^(2))dx