Home
Class 12
MATHS
If intsqrt(((1-sqrtx))/(1+sqrtx))dx=Asqr...

If `intsqrt(((1-sqrtx))/(1+sqrtx))dx=Asqrt(1-x)+B sin^(-1)sqrtx+Csqrt(x-x^(2))+D`, where `A+B+C=`

A

`-1`

B

`-2`

C

3

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \, dx \) and express it in the form \( A\sqrt{1 - x} + B \sin^{-1}(\sqrt{x}) + C\sqrt{x - x^2} + D \), we will follow these steps: ### Step 1: Substitution Let \( \sqrt{x} = \sin(t) \). Then, \( x = \sin^2(t) \) and \( dx = 2\sin(t)\cos(t) \, dt \). ### Step 2: Rewrite the Integral Substituting into the integral gives: \[ \int \sqrt{\frac{1 - \sin(t)}{1 + \sin(t)}} \cdot 2\sin(t)\cos(t) \, dt \] ### Step 3: Simplify the Expression We can simplify \( \sqrt{\frac{1 - \sin(t)}{1 + \sin(t)}} \): \[ \sqrt{\frac{1 - \sin(t)}{1 + \sin(t)}} = \frac{\sqrt{(1 - \sin(t))(1 - \sin(t))}}{\sqrt{(1 + \sin(t))(1 - \sin(t))}} = \frac{1 - \sin(t)}{\sqrt{1 - \sin^2(t)}} = \frac{1 - \sin(t)}{\cos(t)} \] Thus, the integral becomes: \[ \int 2\sin(t)\cos(t) \cdot \frac{1 - \sin(t)}{\cos(t)} \, dt = \int 2\sin(t)(1 - \sin(t)) \, dt \] ### Step 4: Expand the Integral Expanding the integrand: \[ \int 2\sin(t) - 2\sin^2(t) \, dt \] ### Step 5: Integrate Each Term The integral can be split: \[ \int 2\sin(t) \, dt - \int 2\sin^2(t) \, dt \] The first integral is: \[ -2\cos(t) \] For the second integral, we use the identity \( \sin^2(t) = \frac{1 - \cos(2t)}{2} \): \[ \int 2\sin^2(t) \, dt = \int (1 - \cos(2t)) \, dt = t - \frac{1}{2}\sin(2t) \] ### Step 6: Combine Results Combining these results gives: \[ -2\cos(t) - \left(t - \frac{1}{2}\sin(2t)\right) + C \] Substituting back \( t = \sin^{-1}(\sqrt{x}) \) and \( \cos(t) = \sqrt{1 - x} \): \[ -2\sqrt{1 - x} - \sin^{-1}(\sqrt{x}) + \sin(t)\cos(t) + C \] ### Step 7: Final Form Thus, we can express the result as: \[ -2\sqrt{1 - x} - \sin^{-1}(\sqrt{x}) + \sqrt{x(1 - x)} + C \] Comparing with \( A\sqrt{1 - x} + B \sin^{-1}(\sqrt{x}) + C\sqrt{x - x^2} + D \), we find: - \( A = -2 \) - \( B = -1 \) - \( C = 1 \) ### Step 8: Calculate \( A + B + C \) Now, we calculate: \[ A + B + C = -2 - 1 + 1 = -2 \] ### Final Answer Thus, the value of \( A + B + C \) is \( \boxed{-2} \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(1+sqrtx))/(sqrtx)dx=

int1/(sqrtx(1-sqrtx)dx=

int(1)/(sqrtx+x)dx=

int((sqrtx+1)(x^(2)-sqrtx))/(xsqrtx+x+sqrtx)dx

int ((1+sqrtx)^2)/sqrtx dx=

1/(sqrt(x+1) - sqrtx)

1/(sqrt(x+1) - sqrtx)

(1)/(sqrt(x+1)+sqrtx)

int (1)/(sqrtx+ sqrt(x^(3)))dx= ….

f(x)=sqrtx-(1)/(sqrtx)