Home
Class 12
MATHS
int(x^(x))^(2)(1+logx)dx=...

`int(x^(x))^(2)(1+logx)dx=`

A

`((x^(x))^(2))/(2)+c`

B

`x^(x)+c`

C

`(x^(x))/(2)+c`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int (x^x)^2 (1 + \log x) \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = x^x \). ### Step 2: Differentiate \( t \) To find \( \frac{dt}{dx} \), we take the natural logarithm of both sides: \[ \log t = x \log x \] Differentiating both sides using the product rule: \[ \frac{1}{t} \frac{dt}{dx} = \log x + 1 \] Thus, we have: \[ \frac{dt}{dx} = t (\log x + 1) = x^x (1 + \log x) \] ### Step 3: Express \( dx \) in terms of \( dt \) From the equation \( \frac{dt}{dx} = x^x (1 + \log x) \), we can express \( dx \): \[ dx = \frac{dt}{x^x (1 + \log x)} \] ### Step 4: Substitute in the integral Now we substitute \( t \) and \( dx \) into the integral: \[ I = \int (x^x)^2 (1 + \log x) \, dx = \int t^2 \, \frac{dt}{x^x (1 + \log x)} \] Since \( t = x^x \), we can replace \( x^x \) in the denominator: \[ I = \int t^2 \, dt \] ### Step 5: Integrate The integral \( \int t^2 \, dt \) is straightforward: \[ I = \frac{t^3}{3} + C \] ### Step 6: Substitute back for \( t \) Now, we substitute back \( t = x^x \): \[ I = \frac{(x^x)^3}{3} + C = \frac{x^{3x}}{3} + C \] ### Final Result Thus, the final answer is: \[ I = \frac{x^{3x}}{3} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

inte^(2x^(2)+logx)dx=

int_(1)^(2)(logx)/(x)dx

int_(1)^(2)(logx)/(x)dx

int(1)/(x^3)(logx^x)^2dx=

int7^(x logx)(1+logx)dx=

STATEMENT-1 : intx^(x)(1+logx)dx=x^(x)+C and STATEMENT-2 : (d)/(dx)x^(x)=x^(x)(1+logx)

int(log(logx))/(x.logx)dx=

int((logx)^(2))/(x)dx.

int((x+1)(x+logx)^2)/xdx=

MTG-WBJEE-INDEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. int(x^(x))^(2)(1+logx)dx=

    Text Solution

    |

  2. The value of int((x-2)dx)/{(x-2)^(2)(x+3)^(7)}^(1//3) is

    Text Solution

    |